forked from huggingface/torchMoji
-
Notifications
You must be signed in to change notification settings - Fork 5
/
test_finetuning.py
235 lines (183 loc) · 7.08 KB
/
test_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from __future__ import absolute_import, print_function, division, unicode_literals
import test_helper
from nose.plugins.attrib import attr
import json
import numpy as np
from torchmoji.class_avg_finetuning import relabel
from torchmoji.sentence_tokenizer import SentenceTokenizer
from torchmoji.finetuning import (
calculate_batchsize_maxlen,
freeze_layers,
change_trainable,
finetune,
load_benchmark
)
from torchmoji.model_def import (
torchmoji_transfer,
torchmoji_feature_encoding,
torchmoji_emojis
)
from torchmoji.global_variables import (
PRETRAINED_PATH,
NB_TOKENS,
VOCAB_PATH,
ROOT_PATH
)
def test_calculate_batchsize_maxlen():
""" Batch size and max length are calculated properly.
"""
texts = ['a b c d',
'e f g h i']
batch_size, maxlen = calculate_batchsize_maxlen(texts)
assert batch_size == 250
assert maxlen == 10, maxlen
def test_freeze_layers():
""" Correct layers are frozen.
"""
model = torchmoji_transfer(5)
keyword = 'output_layer'
model = freeze_layers(model, unfrozen_keyword=keyword)
for name, module in model.named_children():
trainable = keyword.lower() in name.lower()
assert all(p.requires_grad == trainable for p in module.parameters())
def test_change_trainable():
""" change_trainable() changes trainability of layers.
"""
model = torchmoji_transfer(5)
change_trainable(model.embed, False)
assert not any(p.requires_grad for p in model.embed.parameters())
change_trainable(model.embed, True)
assert all(p.requires_grad for p in model.embed.parameters())
def test_torchmoji_transfer_extend_embedding():
""" Defining torchmoji with extension.
"""
extend_with = 50
model = torchmoji_transfer(5, weight_path=PRETRAINED_PATH,
extend_embedding=extend_with)
embedding_layer = model.embed
assert embedding_layer.weight.size()[0] == NB_TOKENS + extend_with
def test_torchmoji_return_attention():
seq_tensor = np.array([[1]])
# test the output of the normal model
model = torchmoji_emojis(weight_path=PRETRAINED_PATH)
# check correct number of outputs
assert len(model(seq_tensor)) == 1
# repeat above described tests when returning attention weights
model = torchmoji_emojis(weight_path=PRETRAINED_PATH, return_attention=True)
assert len(model(seq_tensor)) == 2
def test_relabel():
""" relabel() works with multi-class labels.
"""
nb_classes = 3
inputs = np.array([
[True, False, False],
[False, True, False],
[True, False, True],
])
expected_0 = np.array([True, False, True])
expected_1 = np.array([False, True, False])
expected_2 = np.array([False, False, True])
assert np.array_equal(relabel(inputs, 0, nb_classes), expected_0)
assert np.array_equal(relabel(inputs, 1, nb_classes), expected_1)
assert np.array_equal(relabel(inputs, 2, nb_classes), expected_2)
def test_relabel_binary():
""" relabel() works with binary classification (no changes to labels)
"""
nb_classes = 2
inputs = np.array([True, False, False])
assert np.array_equal(relabel(inputs, 0, nb_classes), inputs)
@attr('slow')
def test_finetune_full():
""" finetuning using 'full'.
"""
DATASET_PATH = ROOT_PATH+'/data/SS-Youtube/raw.pickle'
nb_classes = 2
# Keras and pyTorch implementation of the Adam optimizer are slightly different and change a bit the results
# We reduce the min accuracy needed here to pass the test
# See e.g. https://discuss.pytorch.org/t/suboptimal-convergence-when-compared-with-tensorflow-model/5099/11
min_acc = 0.68
with open(VOCAB_PATH, 'r') as f:
vocab = json.load(f)
data = load_benchmark(DATASET_PATH, vocab, extend_with=10000)
print('Loading pyTorch model from {}.'.format(PRETRAINED_PATH))
model = torchmoji_transfer(nb_classes, PRETRAINED_PATH, extend_embedding=data['added'])
print(model)
model, acc = finetune(model, data['texts'], data['labels'], nb_classes,
data['batch_size'], method='full', nb_epochs=1)
print("Finetune full SS-Youtube 1 epoch acc: {}".format(acc))
assert acc >= min_acc
@attr('slow')
def test_finetune_last():
""" finetuning using 'last'.
"""
dataset_path = ROOT_PATH + '/data/SS-Youtube/raw.pickle'
nb_classes = 2
min_acc = 0.68
with open(VOCAB_PATH, 'r') as f:
vocab = json.load(f)
data = load_benchmark(dataset_path, vocab)
print('Loading model from {}.'.format(PRETRAINED_PATH))
model = torchmoji_transfer(nb_classes, PRETRAINED_PATH)
print(model)
model, acc = finetune(model, data['texts'], data['labels'], nb_classes,
data['batch_size'], method='last', nb_epochs=1)
print("Finetune last SS-Youtube 1 epoch acc: {}".format(acc))
assert acc >= min_acc
def test_score_emoji():
""" Emoji predictions make sense.
"""
test_sentences = [
'I love mom\'s cooking',
'I love how you never reply back..',
'I love cruising with my homies',
'I love messing with yo mind!!',
'I love you and now you\'re just gone..',
'This is shit',
'This is the shit'
]
expected = [
np.array([36, 4, 8, 16, 47]),
np.array([1, 19, 55, 25, 46]),
np.array([31, 6, 30, 15, 13]),
np.array([54, 44, 9, 50, 49]),
np.array([46, 5, 27, 35, 34]),
np.array([55, 32, 27, 1, 37]),
np.array([48, 11, 6, 31, 9])
]
def top_elements(array, k):
ind = np.argpartition(array, -k)[-k:]
return ind[np.argsort(array[ind])][::-1]
# Initialize by loading dictionary and tokenize texts
with open(VOCAB_PATH, 'r') as f:
vocabulary = json.load(f)
st = SentenceTokenizer(vocabulary, 30)
tokens, _, _ = st.tokenize_sentences(test_sentences)
# Load model and run
model = torchmoji_emojis(weight_path=PRETRAINED_PATH)
prob = model(tokens)
# Find top emojis for each sentence
for i, t_prob in enumerate(list(prob)):
assert np.array_equal(top_elements(t_prob, 5), expected[i])
def test_encode_texts():
""" Text encoding is stable.
"""
TEST_SENTENCES = ['I love mom\'s cooking',
'I love how you never reply back..',
'I love cruising with my homies',
'I love messing with yo mind!!',
'I love you and now you\'re just gone..',
'This is shit',
'This is the shit']
maxlen = 30
batch_size = 32
with open(VOCAB_PATH, 'r') as f:
vocabulary = json.load(f)
st = SentenceTokenizer(vocabulary, maxlen)
print('Loading model from {}.'.format(PRETRAINED_PATH))
model = torchmoji_feature_encoding(PRETRAINED_PATH)
print(model)
tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES)
encoding = model(tokenized)
avg_across_sentences = np.around(np.mean(encoding, axis=0)[:5], 3)
assert np.allclose(avg_across_sentences, np.array([-0.023, 0.021, -0.037, -0.001, -0.005]))
test_encode_texts()