-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_tidal_turbine_pipeline.py
110 lines (95 loc) · 5.81 KB
/
run_tidal_turbine_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import click
from opentidalfarm_extensions.helper_functions.main_optimization_functions import *
def print_optimization_info(output_dict):
"""Print relevant optimization results given a dictionary of output"""
print output_dict
for algo_name, value_dict in output_dict.items():
print 'Total profit from the {} algorithm is {} GBP'.format(algo_name, value_dict['profit'])
print 'The runtime for the {} algorithm was {} seconds'.format(algo_name, value_dict['runtime'])
if algo_name == 'cont':
fric, turbines = value_dict['total_friction'], value_dict['num_turbines']
print 'The cont algo has {} total friction and n={} optimal turbines'.format(fric, turbines)
else:
print 'This optimization routine was undertaken with {} turbines'.format(value_dict['num_turbines'])
@click.command()
@click.option('--turbine_num', default=30, help='The number of turbines to optimize in a discrete farm')
@click.option('--mesh_name', default='small_mesh', help='Choose one of four predefined meshes in {large_mesh, '
'alt_large_mesh, middle_mesh, small_mesh}')
@click.option('--discrete/--no-discrete', default=False, help='Runs the discrete algorithm')
@click.option('--init_two_step/--no-init_two_step', default=False, help='Get the profit from thje init_two steoalgorithm')
@click.option('--full_two_step/--no-full_two_step', default=False, help='Runs the two-step algorithm')
@click.option('--mipdeco/--no-mipdeco', default=False, help='Runs the mipdeco algorithm')
@click.option('--turbine_friction', default=.927, help='User-specified friction of individual turbines')
@click.option('--minimum_distance', default=40, help='User-specified minimum distance between turbines')
@click.option('--efficiency', default=.5, help='Efficiency of turbine energy extraction')
@click.option('--lcoe', default=107.89, help='Levelized cost of Energy')
@click.option('--discount_rate', default=.1, help='Efficiency of turbine energy extraction')
@click.option('--income_per_unit', default=330.51, help='Income per MWh in 2016 GBP')
@click.option('--timesteps', default=5, help='Number of years over which the farm is optimized')
@click.option('--velocity', default=2.0, help='Number of years over which the farm is optimized')
@click.option('--blade_radius', default=8.35, help='Number of years over which the farm is optimized')
def run_tidal_turbine_pipeline(turbine_num, mesh_name, discrete, init_two_step, full_two_step, mipdeco,
turbine_friction, minimum_distance, efficiency, lcoe, discount_rate,
income_per_unit, timesteps, velocity, blade_radius):
"""Run the tidal turbine pipeline with a choice of algorithms and default and/or user-specified parameters
Args:
turbine_num: number of discrete turbines to optimize for
mesh_name: Name of the mesh folder which contains the mesh.xml you want to use
discrete: A boolean determining whether the discrete algorithm will be run
init_two_step: A boolean determining whether the initial two-step profit will be calculated
full_two_step: A boolean determining whether the two-step algorithm will be run
mipdeco: A boolean determining whether the mipdeco algorithm will be run
turbine_friction: The friction per discrete turbine. Defaults to ModelBinaryTurbine value
minimum_distance: The minimum distance between two turbines. Default value as above.
efficiency: A value between 0 and 1 representing efficiency of power extraction
lcoe: The levelized cost of energy extraction. See paper for default justification
discount_rate: The time-discounting rate of money. See paper as above
income_per_unit: Income per unit of MWh of energy. See paper as above
timesteps: Number of time periods (years) for the optimization algorithms to optimize over
velocity: Constant velocity of water entering the western boundary of the farm
blade_radius: Radius of the turbine blade
"""
model_turbine = BinaryModelTurbine(blade_radius, efficiency, velocity, discount_rate, timesteps, lcoe,
minimum_distance)
param_dict = get_algorithm_params(mesh_name, model_turbine)
user_params = {
'turbine_friction': turbine_friction,
'diameter': 2 * blade_radius,
'minimum_distance': minimum_distance,
'turbine_num': turbine_num,
'efficiency': efficiency,
'LCOE': lcoe,
'discount_rate': discount_rate,
'I': income_per_unit,
'timesteps': timesteps
}
# update user_params to include all user-supplied and default parameters
update_user_params(user_params, param_dict)
# the continuous algorithm is run by default
output_dict = {}
new_dict, discrete_locs = optimize_continuous_farm(user_params)
output_dict.update(new_dict)
# run the discrete algorithm
if discrete:
discrete_dict = evaluate_non_continuous_farm(user_params, potential_turbine_locs=None, algo_name='discrete',
optimize_disc=True)
output_dict.update(discrete_dict)
# evaluate the continuous algorithm after converting a continuous density field to discrete turbines
if init_two_step:
init_two_step_dict = evaluate_non_continuous_farm(user_params, discrete_locs, init_two_step=True)
output_dict.update(init_two_step_dict)
# optimize the initial placement of the turbines placed in `init_two_step`
if full_two_step:
full_two_step_dict = evaluate_non_continuous_farm(user_params, discrete_locs, algo_name='full_two_step',
full_two_step=True)
output_dict.update(full_two_step_dict)
# run the mipdeco algorithm with the continuous optimal density field as input
if mipdeco:
mipdeco_dict = evaluate_non_continuous_farm(user_params, discrete_locs, algo_name='mipdeco',
optimize_mipdeco=True)
output_dict.update(mipdeco_dict)
# display the results for all chosen optimization algorithms
print_optimization_info(output_dict)
# runs the code with the specified --args
if __name__ == '__main__':
run_tidal_turbine_pipeline()