-
Notifications
You must be signed in to change notification settings - Fork 0
/
Train_MNIST_Model.py
162 lines (134 loc) · 4.7 KB
/
Train_MNIST_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# -*- coding: utf-8 -*-
"""
Created on Friday 2 Feb 2020
@author: Chris.Cui
Email: [email protected]
"""
#%% load all the pkgs
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential, load_model
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.callbacks import ModelCheckpoint, EarlyStopping
import os
import numpy as np
from matplotlib import pyplot as plt
from datetime import datetime
import pickle
#%% Load the data
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
nb_train_sample = len(y_train)
nb_validation_sample = len(y_test)
#%% Preporcessing the data
# input image dimensions
img_rows, img_cols = 28, 28
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
num_classes = 10
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
#%% design the structure of the model
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(16, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
#%% model training merics
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
print(model.summary())
#%% Train the model
# checkpoint
# now = datetime.now()
# best_model_filepath="mnist.weights.best."+str( now.strftime("%Y.%m.%d_%H.%M.%S"))+".h5"
best_model_filepath = "./models/mnist.weights.best.h5"
checkpoint = ModelCheckpoint(best_model_filepath,
monitor='val_acc',
verbose=1, save_best_only=True, mode='Max')
stoppoint = EarlyStopping(monitor='val_acc', min_delta=0.001,
verbose=1, mode='Max', patience=5)
callbacks_list = [checkpoint, stoppoint]
# Fit the model
batch_size = 1024
epochs = 30
print('*'*80)
print('Start the training process at:', datetime.now())
print('*'*80)
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test),
callbacks=callbacks_list)
print('*'*80)
print('End the training process at:', datetime.now())
print('*'*80)
# save the training records
pickle_out = open("./models/history.pickle","wb")
pickle.dump(history, pickle_out)
# *** output on my desktop
# ...
# Epoch 00020: val_acc did not improve from 0.99210
# Epoch 00020: early stopping
# ***
# End the training process at: 2020-02-04 10:33:54.029526
# ***
#%%
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
#%% save the training resutls
# Plot training & validation accuracy values
plt.figure(figsize=(8, 6))
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
# plt.show()
plt.savefig('./images/training_validation_accuracy_values.png', dpi= 300 )
# Plot training & validation loss values
plt.figure(figsize=(8, 6))
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
# plt.show()
plt.savefig('./images/training_validation_loss_values.png', dpi= 300 )
#%% save and reload the model with a timestamp / in case overight the original one
# now=datetime.now()
# save_model_dir = './models/'
# final_model_name = str(now.strftime("%Y.%m.%d_%H.%M.%S")) +'.MnistModel.h5'
# save_final_model_path = os.path.join(save_model_dir, final_model_name)
# model.save(save_final_model_path)
# Final_model = load_model(save_final_model_path) # maybe overfitting.
# Final_model.summary()
#%% add more ...