Introduction
Google Cloud's Blockchain Analytics offers indexed blockchain data made available through BigQuery for easy analysis through SQL.
Visit the Google Web3 portal to retrieve all available datasets.
Blockchain Analytics offers you access to reliable data without the overhead of operating nodes or developing and maintaining an indexer. You can now query the full history of blocks, transactions, logs and receipts for Cronos.
By leveraging datasets in BigQuery, you can access blockchain data as easily as your internal data. By joining chain data with application data, you can get a complete picture of your users and your business.
Like the existing public blockchain datasets, customers are not charged for storage of the data, only for querying the data based on BigQuery pricing.
- Go to Cronos dataset and click on one of the samples.
- You will get to the console and see the Cronos dataset on the left in the explorer
{% hint style="warning" %}
Please note
BigQuery charges are based on the amount of data processed by your queries, so running the query may incur charges to your account. You can find the consumption estimate in the top right corner similar to the warning of "This query will process 65.73 MB when run."
{% endhint %}
-
If you see on the sample you should get the BigQuery SQL code to query:
Which wallets had the most number of interactions with the Wrapped Cronos contract in the past 30 days?Let's click the big
RUN
button.
(To save costs, replace the existing query with the one below, using a "1 day" interval instead of "30 days" in the BigQuery console).
To start developing your own BigQuery SQL code, we refer to the following syntax.
For the Cronos data schema we refer to the Google Cloud Cronos schema.
SELECT
t.from_address AS address,
CONCAT("https://cronoscan.com/address/", t.from_address) AS cronoscan_link,
COUNT(t.from_address) AS num_transactions
FROM
`bigquery-public-data.goog_blockchain_cronos_mainnet_us.transactions` AS t
INNER JOIN
bigquery-public-data.goog_blockchain_cronos_mainnet_us.blocks AS b
ON
b.block_hash = t.block_hash
WHERE
t.to_address = LOWER("0x5C7F8A570d578ED84E63fdFA7b1eE72dEae1AE23") -- Wrapped CRO
AND
b.block_timestamp > (CURRENT_TIMESTAMP() - INTERVAL 1 HOUR)
AND
t.block_timestamp > (CURRENT_TIMESTAMP() - INTERVAL 1 HOUR)
GROUP BY
t.from_address
ORDER BY
COUNT(t.from_address) DESC
;
- We can now query the results in the results tab below, further explore by exporting the results or visualizing in another tool such as Google sheets or Looker.
Row | address | cronoscan_link | num_transactions |
---|---|---|---|
1 | 0x3270c9a4558774cc8f2a19708edc190366028b96 | https://cronoscan.com/address/0x3270c9a4558774cc8f2a19708edc190366028b96 | 1 |
2 | 0xbeaf1c7fed452be2dcfd2a8fe1fcd74b241acfc7 | https://cronoscan.com/address/0x693fb96fdda3c382fde7f43a622209c3dd028b98 | 1 |
3 | 0xddb162b31f562f1be0fa585d3ca6a55786e59af3 | https://cronoscan.com/address/0x6614d26064d762922c7bc7a00337713d5169ae7c | 1 |
SELECT
MIN(block_number) AS `First block`,
MAX(block_number) AS `Newest block`,
COUNT(1) AS `Total number of blocks`
FROM
`bigquery-public-data.goog_blockchain_cronos_mainnet_us.blocks` AS t
Row | First block | Newest block | Total number of blocks | |
---|---|---|---|---|
1 | 1 | 12134627 | 12134627 |
SELECT
DATE(block_timestamp) AS date,
COUNT(*) AS num_transactions
FROM
`bigquery-public-data.goog_blockchain_cronos_mainnet_us.transactions`
WHERE
block_timestamp >= TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 10 DAY)
GROUP BY
1
ORDER BY
1 DESC;
Row | date | num_transactions |
---|---|---|
1 | 2024-01-18 | 10250 |
2 | 2024-01-17 | 47747 |
3 | 2024-01-16 | 49717 |
4 | 2024-01-15 | 47099 |
5 | 2024-01-14 | 47051 |
SELECT block_hash, SUM(value.bignumeric_value / 1000000000000000000) value_total
FROM `bigquery-public-data.goog_blockchain_cronos_mainnet_us.transactions` AS t
JOIN `bigquery-public-data.goog_blockchain_cronos_mainnet_us.receipts` AS r USING (block_hash, transaction_hash)
WHERE status = 1
AND
t.block_timestamp > (CURRENT_TIMESTAMP() - INTERVAL 1 HOUR)
AND
r.block_timestamp > (CURRENT_TIMESTAMP() - INTERVAL 1 HOUR)
GROUP BY block_hash
ORDER BY value_total DESC
LIMIT 5
Row | block_hash | value_total |
1 | 0x7cac0bbf3909902a8670f962fbc9721391178850a2672d82b75c5a79b332a4f8 | 36836.840925000000000001 |
2 | 0xb53bd2c1a1d136e9b4dda4af47c488d278a0ee450adecd991cf13b187ce17a93 | 36729 |
3 | 0x28e0d8c31625ca43b565f1202b91e6cb20b709e25bea65185dcda7a3d176957d | 33359.85627 |
4 | 0xfe8e732779101854cfaeed2404f7b53d3b64879069b5d8e8372f64d1cfe4a47f | 22577.325273500000000015 |
5 | 0xd0b81821a57dc939dce80b29e9642f4a39e4bd2d346b5943a2532e69f191de57 | 22231.469422733370862931 |
SELECT
from_address,
COUNT(*) AS num_transactions
FROM `bigquery-public-data.goog_blockchain_cronos_mainnet_us.transactions` as t
WHERE
t.block_timestamp > (CURRENT_TIMESTAMP() - INTERVAL 1 HOUR)
GROUP BY from_address
ORDER BY num_transactions DESC
LIMIT 10;
Row | from_address | num_transactions |
---|---|---|
1 | 0x25aa97464f38a1506a16160bbc03cfc6dd863da3 | 211 |
2 | 0x227f6757289a86c13eee2e91c2e6eb03f2ed11a6 | 136 |
3 | 0x95d49a8a2d69b2a2de4a00655d05ee39f9c41108 | 134 |
4 | 0x15d190dd8a1ed39cf5b790e2ffed1f365e9c865b | 116 |
5 | 0xc9219731adfa70645be14cd5d30507266f2092c5 | 80 |
6 | 0x6614d26064d762922c7bc7a00337713d5169ae7c | 65 |
7 | 0x34cfa46732692ab062f0453036cd5a4f5b771473 | 59 |
8 | 0x693fb96fdda3c382fde7f43a622209c3dd028b98 | 50 |
9 | 0x71f0cdb17454ad7eeb7e26242292fe0e0189645a | 50 |
10 | 0x518a9d51ba8841046859a7722e75f92ffdadd0c4 | 37 |
-- UDF for easier string manipulation.
CREATE TEMP FUNCTION ParseSubStr(hexStr STRING, startIndex INT64, endIndex INT64)
RETURNS STRING
LANGUAGE js
AS r"""
if (hexStr.length < 1) {
return hexStr;
}
return hexStr.substring(startIndex, endIndex);
""";
-- UDF to convert hex to decimal.
CREATE TEMP FUNCTION HexToDecimal(hexStr STRING)
RETURNS INT64
LANGUAGE js
AS r"""
return parseInt(hexStr, 16);
""";
SELECT
t.transaction_hash,
t.from_address AS from_address,
CONCAT("0x", ParseSubStr(l.topics[OFFSET(2)], 26, LENGTH(l.topics[OFFSET(2)]))) AS to_address,
(HexToDecimal(l.data) / 1000000) AS usdt_transfer_amount
FROM
`bigquery-public-data.goog_blockchain_cronos_mainnet_us.transactions` AS t
INNER JOIN
`bigquery-public-data.goog_blockchain_cronos_mainnet_us.logs` AS l
ON
l.transaction_hash = t.transaction_hash
WHERE
t.to_address = LOWER("0x66e428c3f67a68878562e79a0234c1f83c208770") -- USDT
AND
t.block_timestamp >= (CURRENT_TIMESTAMP() - INTERVAL 1 HOUR)
AND
l.block_timestamp >= (CURRENT_TIMESTAMP() - INTERVAL 1 HOUR)
AND
ARRAY_LENGTH(l.topics) > 0
AND
-- Transfer(address indexed src, address indexed dst, uint wad)
l.topics[OFFSET(0)] = LOWER("0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef") -- Transfer
;
Row | transaction_hash | from_address | to_address | usdt_transfer_amount |
1 | 0xa3b78f79dee6970f3abc763b52f24a6d46aeba3e2370943f8eb2d68ff00d788a | 0xc9219731adfa70645be14cd5d30507266f2092c5 | 0x539b85a6853e8740cd918009197c799d205787eb | 309.82 |
2 | 0xc2abd163669a703ee850e432ac7c1a744b63bb1ff8e9b4cdee3ec2d95768fc75 | 0xc9219731adfa70645be14cd5d30507266f2092c5 | 0xc041126c1d07b72ee0f366e1fca339b4fed537cb | 9.38 |
3 | 0x214cdef8263b4f8cc517d09673c126375c682b9b83d55c7ad889055c57533390 | 0xc9219731adfa70645be14cd5d30507266f2092c5 | 0xfca38e2882d8a549c660ccb17a8fe0463fab060e | 11.82 |
4 | 0x40e24cc93abc746aa7c96482144772421412b9a733210644bab6ff6290996a1e | 0xc9219731adfa70645be14cd5d30507266f2092c5 | 0x67b652172633b451a826aac6da7ed63693133fd2 | 11.26 |
5 | 0xb211dcb87ec8bbb115a4c6eae6c5a8861e04557b8b502e5a5858e70ae512183b | 0x539b85a6853e8740cd918009197c799d205787eb | 0x8995909dc0960fc9c75b6031d683124a4016825b | 309.82 |
6. For Dapps - Count the total number of unique transactions and users interaction with a specific smart contract on a given day
SELECT
COUNT(DISTINCT transaction_hash) AS total_transactions,
COUNT(DISTINCT from_address) AS unique_users,date(block_Timestamp) as date
FROM
`bigquery-public-data.goog_blockchain_cronos_mainnet_us.transactions`
WHERE
to_address = '0x9fae23a2700feecd5b93e43fdbc03c76aa7c08a6'
AND block_timestamp BETWEEN TIMESTAMP('2023-01-01 00:00:00') AND TIMESTAMP('2023-01-02 00:00:00')
GROUP BY
date
Row | |||
---|---|---|---|
Row | total_transactions | unique_users | date |
1 | 288 | 131 | 2023-01-01 |
7. [DApp] Top 5 addresses with the highest number of transactions sent to the contract at a specific contract within the specified date range
SELECT
from_address,
COUNT(transaction_hash) AS transaction_count,
FROM
`bigquery-public-data.goog_blockchain_cronos_mainnet_us.transactions`
WHERE
to_address = '0x9fae23a2700feecd5b93e43fdbc03c76aa7c08a6'
AND block_timestamp BETWEEN TIMESTAMP('2024-05-01 00:00:00 UTC') AND TIMESTAMP('2024-07-31 23:59:59 UTC')
GROUP BY
from_address
ORDER BY
transaction_count DESC
LIMIT 5
Row | from_address | transaction_count |
1 | 0x8c0ec5772bd92d55edd1325d022ec07e54ae1b0e | 3515 |
2 | 0x849c34e2bcd65a861dfaefe415aafb2826c46b96 | 224 |
3 | 0xc9219731adfa70645be14cd5d30507266f2092c5 | 129 |
4 | 0xfe5b12a84019dcd8178a4c684885a8e685bef238 | 72 |
5 | 0x254b5fed7b453831e89e566a2e02678636e9f010 | 46 |