Skip to content

Latest commit

 

History

History
101 lines (74 loc) · 5.08 KB

README.md

File metadata and controls

101 lines (74 loc) · 5.08 KB

HyperMinSketch

Besides being a compact and pretty speedy HyperLogLog implementation for cardinality counting, this modified HyperLogLog allows intersection and similarity estimation of different HyperLogLogs.

Details

A simple implementation of HyperLogLog (LogLog-Beta to be specific):

  • 16 bit registers instead of 6 bit, the new 10 bit are for b-bit signatures
  • Similarity function estimates Jaccard indices (a number between 0-1) of 0.01 for set cardinalities on the order of 1e9 with accuracy around 5%
  • Intersection applies the Jaccard index on the union of the sets to return the intersecting set cardinality

The work is based on "HyperMinHash: Jaccard index sketching in LogLog space - Yun William Yu, Griffin M. Weber"

Example Usage

sk1 := hyperminhash.New()
sk2 := hyperminhash.New()

for i := 0; i < 10000; i++ {
    sk1.Add([]byte(strconv.Itoa(i)))
}

sk1.Cardinality() // 10001 (should be 10000)

for i := 3333; i < 23333; i++ {
    sk2.Add([]byte(strconv.Itoa(i)))
}

sk2.Cardinality()     // 19977 (should be 20000)
sk1.Similarity(sk2)   // 0.284589082 (should be 0.2857326533)
sk1.Intersection(sk2) // 6623 (should be 6667)

sk1.Merge(sk2)
sk1.Cardinality() // 23271 (should be 23333)

Results

Max Cardinality 1e3

Set1 HLL1 Set2 HLL2 S1 ∪ S2 HLL1 ∪ HLL2 S1 ∩ S2 HLL1 ∩ HLL2
350 352 752 752 831 832 271 (32.611312%) 274 (32.932692%)
746 748 591 590 834 835 503 (60.311751%) 501 (60.000000%)
248 248 789 791 897 899 140 (15.607581%) 144 (16.017798%)
9 9 818 818 824 825 3 (0.364078%) 3 (0.363636%)
408 411 412 408 771 771 49 (6.355383%) 47 (6.095979%)

Max Cardinality 1e4

Set1 HLL1 Set2 HLL2 S1 ∪ S2 HLL1 ∪ HLL2 S1 ∩ S2 HLL1 ∩ HLL2
2126 2138 1162 1158 3063 3060 225 (7.345739%) 223 (7.287582%)
7767 7706 7054 7064 8889 8887 5932 (66.734166%) 5888 (66.254079%)
842 844 5183 5135 5880 5842 145 (2.465986%) 135 (2.310852%)
6833 6791 664 666 7410 7345 87 (1.174089%) 89 (1.211709%)
1814 1820 6214 6169 7697 7639 331 (4.300377%) 320 (4.189030%)

Max Cardinality 1e5

Set1 HLL1 Set2 HLL2 S1 ∪ S2 HLL1 ∪ HLL2 S1 ∩ S2 HLL1 ∩ HLL2
29667 29540 88700 88167 92444 91667 25923 (28.041842%) 25036 (27.311901%)
79242 78731 30216 30137 83502 82953 25956 (31.084285%) 25995 (31.337022%)
57830 57223 79550 79194 82112 81595 55268 (67.308067%) 54684 (67.018812%)
64610 63501 21696 21729 75895 74816 10411 (13.717636%) 10083 (13.477064%)
92204 91453 96417 95556 165025 163370 23596 (14.298440%) 24130 (14.770154%)

Max Cardinality 1e6

Set1 HLL1 Set2 HLL2 S1 ∪ S2 HLL1 ∪ HLL2 S1 ∩ S2 HLL1 ∩ HLL2
150443 149810 974366 979514 1088517 1096991 36292 (3.334077%) 37417 (3.410876%)
156337 155347 19083 19070 167353 165433 8067 (4.820350%) 8017 (4.846071%)
800969 802044 51053 51244 851388 853396 634 (0.074467%) 511 (0.059878%)
176155 174707 520111 516822 570092 569289 126174 (22.132217%) 123766 (21.740452%)
485954 481362 967341 972651 1081990 1091296 371305 (34.316861%) 376007 (34.455088%)

Max Cardinality 1e7

Set1 HLL1 Set2 HLL2 S1 ∪ S2 HLL1 ∪ HLL2 S1 ∩ S2 HLL1 ∩ HLL2
7132942 7150720 122116 121539 7243153 7261709 11905 (0.164362%) 12550 (0.172824%)
8646240 8649049 1277784 1295017 9821480 9854242 102544 (1.044079%) 99163 (1.006298%)
4192390 4164637 2788913 2779975 4526476 4499897 2454827 (54.232630%) 2454356 (54.542493%)
9803344 9826412 1705700 1715798 10255010 10262719 1254034 (12.228501%) 1273821 (12.412120%)
1308849 1322604 9940327 9971519 11179030 11201850 70146 (0.627478%) 80717 (0.720568%)

Max Cardinality 1e8

Set1 HLL1 Set2 HLL2 S1 ∪ S2 HLL1 ∪ HLL2 S1 ∩ S2 HLL1 ∩ HLL2
13237748 13298469 57073758 57124720 59474437 59394847 10837069 (18.221390%) 11143669 (18.762013%)
90757994 88576114 5717797 5701796 95061178 93016636 1414613 (1.488108%) 1350058 (1.451416%)
60150663 60033013 79238333 77672994 110438475 108311818 28950521 (26.214162%) 27666946 (25.543792%)
30187492 30718889 37756209 37153655 67443566 66938074 500135 (0.741561%) 447406 (0.668388%)
53196095 53461989 48344583 47535284 93284291 91321031 8256387 (8.850780%) 8036467 (8.800237%)