-
Notifications
You must be signed in to change notification settings - Fork 21
/
test.py
60 lines (51 loc) · 1.85 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import time
import os
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import ntpath
#from util.visualizer import Visualizer
#from util import html
import skvideo.io
import numpy as np
from PIL import Image
import cv2
opt = TestOptions().parse()
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
model = create_model(opt)
#visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
#webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
# test
def save_videos(web_dir, visuals, vid_path):
vid_dir = os.path.join(web_dir, 'videos')
name = ntpath.basename(vid_path).split('.')[0]
#print("vid_dir: {}".format(vid_dir))
#print("name: {}".format(name))
vid_numpy = np.concatenate((visuals['real_A'], visuals['real_B'], visuals['fake_B']), axis=2)
#print(vid_numpy.shape)
for i in range(vid_numpy.shape[0]):
save_path = vid_dir
save_name = name + '_' + str(i) +'.png'
print("save_path: {}".format(save_path+save_name))
if not os.path.exists(save_path):
os.mkdir(save_path)
img = vid_numpy[i][:, :, ::-1]
#print(img.shape)
cv2.imwrite(save_path+save_name, img)
for i, data in enumerate(dataset):
if i >= opt.how_many:
print('break')
model.set_input(data)
model.test()
visuals = model.get_current_visuals()
vid_path = model.get_image_paths()
#print(visuals)
print('process video... %s' % vid_path)
save_videos(web_dir, visuals, vid_path)