forked from bchidamb/Jess-s_Angels
-
Notifications
You must be signed in to change notification settings - Fork 1
/
keras_nn.py
76 lines (58 loc) · 2.09 KB
/
keras_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Activation, Dense
from utils import *
from sys import getsizeof
# WARNING: This file takes a very long time to run
model = 'keras_nn'
ordering = 'mu' # rows correspond to movie_ids; cols correspond to user_ids
submit = False # set to True to save a submission on qual
def to_categorical(I, n):
count = len(I)
v = np.full((count, n), False)
for c, i in enumerate(I):
v[c, i] = True
return v
def embedding_model(n_users, n_movies):
# Returns fresh Keras model for training on movie/user/rating data
# X = user one-hot vector concatenated with movie one-hot vector
# Y = integer rating (1-5)
model = Sequential()
model.add(Dense(10, input_dim=n_users + n_movies))
model.add(Activation('relu'))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='SGD')
return model
print('Loading data...')
df = pd.read_csv(os.path.join('data', 'mu_probe.csv')) # change to 'mu_train.csv'
row = df['User Number'].values - 1
col = df['Movie Number'].values - 1
val = df['Rating'].values
df_val = pd.read_csv(os.path.join('data', 'mu_val.csv'))
row_val = df_val['User Number'].values - 1
col_val = df_val['Movie Number'].values - 1
val_val = df_val['Rating'].values
n_users, n_movies = max(df['User Number']), max(df['Movie Number'])
n_examples = df.shape[0]
print(n_examples)
print(n_users)
print(n_movies)
ind = np.random.permutation(n_examples)
def generate_examples(batch_size=100):
while True:
i = np.random.randint(n_examples // batch_size)
idx = ind[i * batch_size : (i + 1) * batch_size]
user_vect = to_categorical(row[idx], n_users)
movie_vect = to_categorical(col[idx], n_movies)
x = np.hstack((user_vect, movie_vect))
y = val[idx]
yield (x, y)
print('Training model...')
batch_size = 100
cf_model = embedding_model(n_users, n_movies)
cf_model.fit_generator(
generate_examples(batch_size),
steps_per_epoch=n_examples / batch_size,
epochs=3
)