-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
GlobalStoresExample.java
249 lines (218 loc) · 12.2 KB
/
GlobalStoresExample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams;
import io.confluent.examples.streams.avro.Customer;
import io.confluent.examples.streams.avro.EnrichedOrder;
import io.confluent.examples.streams.avro.Order;
import io.confluent.examples.streams.avro.Product;
import io.confluent.kafka.serializers.AbstractKafkaSchemaSerDeConfig;
import io.confluent.kafka.streams.serdes.avro.SpecificAvroSerde;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.Consumed;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.Produced;
import org.apache.kafka.streams.processor.api.FixedKeyProcessor;
import org.apache.kafka.streams.processor.api.FixedKeyProcessorContext;
import org.apache.kafka.streams.processor.api.FixedKeyRecord;
import org.apache.kafka.streams.processor.api.Processor;
import org.apache.kafka.streams.processor.api.ProcessorContext;
import org.apache.kafka.streams.processor.api.Record;
import org.apache.kafka.streams.state.KeyValueStore;
import org.apache.kafka.streams.state.Stores;
import java.util.Collections;
import java.util.Map;
import java.util.Properties;
/**
* Demonstrates how to perform "joins" between KStreams and GlobalStore, i.e. joins that
* don't require re-partitioning of the input streams.
* <p>
* The {@link GlobalKTablesExample} shows another way to perform the same operation using
* {@link org.apache.kafka.streams.kstream.GlobalKTable} and the join operator.
* <p>
* In this example, we join a stream of orders that reads from a topic named
* "order" with a customers global store that reads from a topic named "customer", and a products
* global store that reads from a topic "product". The join produces an EnrichedOrder object.
* <p>
* <br>
* HOW TO RUN THIS EXAMPLE
* <p>
* 1) Start Zookeeper, Kafka, and Confluent Schema Registry. Please refer to <a href="http://docs.confluent.io/current/quickstart.html#quickstart">QuickStart</a>.
* <p>
* 2) Create the input/intermediate/output topics used by this example.
* <pre>
* {@code
* $ bin/kafka-topics --create --topic order \
* --zookeeper localhost:2181 --partitions 4 --replication-factor 1
* $ bin/kafka-topics --create --topic customer \
* --zookeeper localhost:2181 --partitions 3 --replication-factor 1
* $ bin/kafka-topics --create --topic product \
* --zookeeper localhost:2181 --partitions 2 --replication-factor 1
* $ bin/kafka-topics --create --topic enriched-order \
* --zookeeper localhost:2181 --partitions 4 --replication-factor 1
* }</pre>
* Note: The above commands are for the Confluent Platform. For Apache Kafka it should be
* `bin/kafka-topics.sh ...`.
* <p>
* 3) Start this example application either in your IDE or on the command line.
* <p>
* If via the command line please refer to <a href="https://github.com/confluentinc/kafka-streams-examples#packaging-and-running">Packaging</a>.
* Once packaged you can then run:
* <pre>
* {@code
* $ java -cp target/kafka-streams-examples-6.0.1-standalone.jar io.confluent.examples.streams.GlobalStoresExample
* }
* </pre>
* 4) Write some input data to the source topics (e.g. via {@link GlobalKTablesAndStoresExampleDriver}). The
* already running example application (step 3) will automatically process this input data and write
* the results to the output topic.
* <pre>
* {@code
* # Here: Write input data using the example driver. The driver will exit once it has received
* # all EnrichedOrders
* $ java -cp target/kafka-streams-examples-6.0.1-standalone.jar io.confluent.examples.streams.GlobalKTablesAndStoresExampleDriver
* }
* </pre>
* <p>
* 5) Once you're done with your experiments, you can stop this example via {@code Ctrl-C}. If needed,
* also stop the Confluent Schema Registry ({@code Ctrl-C}), then stop the Kafka broker ({@code Ctrl-C}), and
* only then stop the ZooKeeper instance ({@code Ctrl-C}).
*/
public class GlobalStoresExample {
static final String ORDER_TOPIC = "order";
static final String CUSTOMER_TOPIC = "customer";
static final String PRODUCT_TOPIC = "product";
static final String CUSTOMER_STORE = "customer-store";
static final String PRODUCT_STORE = "product-store";
static final String ENRICHED_ORDER_TOPIC = "enriched-order";
public static void main(final String[] args) {
final String bootstrapServers = args.length > 0 ? args[0] : "localhost:9092";
final String schemaRegistryUrl = args.length > 1 ? args[1] : "http://localhost:8081";
final KafkaStreams
streams =
createStreams(bootstrapServers, schemaRegistryUrl, "/tmp/kafka-streams-global-stores");
// Always (and unconditionally) clean local state prior to starting the processing topology.
// We opt for this unconditional call here because this will make it easier for you to play around with the example
// when resetting the application for doing a re-run (via the Application Reset Tool,
// https://docs.confluent.io/platform/current/streams/developer-guide/app-reset-tool.html).
//
// The drawback of cleaning up local state prior is that your app must rebuilt its local state from scratch, which
// will take time and will require reading all the state-relevant data from the Kafka cluster over the network.
// Thus in a production scenario you typically do not want to clean up always as we do here but rather only when it
// is truly needed, i.e., only under certain conditions (e.g., the presence of a command line flag for your app).
// See `ApplicationResetExample.java` for a production-like example.
streams.cleanUp();
// start processing
streams.start();
// Add shutdown hook to respond to SIGTERM and gracefully close Kafka Streams
Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
}
public static KafkaStreams createStreams(final String bootstrapServers,
final String schemaRegistryUrl,
final String stateDir) {
final Properties streamsConfiguration = new Properties();
// Give the Streams application a unique name. The name must be unique in the Kafka cluster
// against which the application is run.
streamsConfiguration.put(StreamsConfig.APPLICATION_ID_CONFIG, "global-stores-example");
streamsConfiguration.put(StreamsConfig.CLIENT_ID_CONFIG, "global-stores-example-client");
// Where to find Kafka broker(s).
streamsConfiguration.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
streamsConfiguration.put(StreamsConfig.STATE_DIR_CONFIG, stateDir);
// Set to earliest so we don't miss any data that arrived in the topics before the process
// started
streamsConfiguration.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
// create and configure the SpecificAvroSerdes required in this example
final SpecificAvroSerde<Order> orderSerde = new SpecificAvroSerde<>();
final Map<String, String> serdeConfig =
Collections.singletonMap(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
schemaRegistryUrl);
orderSerde.configure(serdeConfig, false);
final SpecificAvroSerde<Customer> customerSerde = new SpecificAvroSerde<>();
customerSerde.configure(serdeConfig, false);
final SpecificAvroSerde<Product> productSerde = new SpecificAvroSerde<>();
productSerde.configure(serdeConfig, false);
final SpecificAvroSerde<EnrichedOrder> enrichedOrdersSerde = new SpecificAvroSerde<>();
enrichedOrdersSerde.configure(serdeConfig, false);
final StreamsBuilder builder = new StreamsBuilder();
// Get the stream of orders
final KStream<Long, Order> ordersStream = builder.stream(ORDER_TOPIC, Consumed.with(Serdes.Long(), orderSerde));
// Add a global store for customers. The data from this global store
// will be fully replicated on each instance of this application.
builder.addGlobalStore(
Stores.keyValueStoreBuilder(Stores.persistentKeyValueStore(CUSTOMER_STORE), Serdes.Long(), customerSerde),
CUSTOMER_TOPIC,
Consumed.with(Serdes.Long(), customerSerde),
() -> new GlobalStoreUpdater<>(CUSTOMER_STORE));
// Add a global store for products. The data from this global store
// will be fully replicated on each instance of this application.
builder.addGlobalStore(
Stores.keyValueStoreBuilder(Stores.persistentKeyValueStore(PRODUCT_STORE), Serdes.Long(), productSerde),
PRODUCT_TOPIC,
Consumed.with(Serdes.Long(), productSerde),
() -> new GlobalStoreUpdater<>(PRODUCT_STORE));
// We transform each order with a value transformer which will access each
// global store to retrieve customer and product linked to the order.
final KStream<Long, EnrichedOrder> enrichedOrdersStream = ordersStream.processValues(() -> new FixedKeyProcessor<Long, Order, EnrichedOrder>() {
private FixedKeyProcessorContext<Long, EnrichedOrder> processorContext;
private KeyValueStore<Long, Customer> customerStore;
private KeyValueStore<Long, Product> productStore;
@Override
public void init(final FixedKeyProcessorContext<Long, EnrichedOrder> processorContext) {
this.processorContext = processorContext;
customerStore = processorContext.getStateStore(CUSTOMER_STORE);
productStore = processorContext.getStateStore(PRODUCT_STORE);
}
@Override
public void process(final FixedKeyRecord<Long, Order> record) {
// Get the customer corresponding the order from the customer store
final Customer customer = customerStore.get(record.value().getCustomerId());
// Get the product corresponding the order from the product store
final Product product = productStore.get(record.value().getProductId());
processorContext.forward(record.withValue(new EnrichedOrder(product, customer, record.value())));
}
});
// write the enriched order to the enriched-order topic
enrichedOrdersStream.to(ENRICHED_ORDER_TOPIC, Produced.with(Serdes.Long(), enrichedOrdersSerde));
return new KafkaStreams(builder.build(), streamsConfiguration);
}
// Processor that keeps the global store updated.
private static class GlobalStoreUpdater<K, V> implements Processor<K, V, Void, Void> {
private final String storeName;
public GlobalStoreUpdater(final String storeName) {
this.storeName = storeName;
}
private KeyValueStore<K, V> store;
@Override
public void init(final ProcessorContext<Void, Void> processorContext) {
store = processorContext.getStateStore(storeName);
}
@Override
public void process(final Record<K, V> record) {
// We are only supposed to put operation the keep the store updated.
// We should not filter record or modify the key or value
// Doing so would break fault-tolerance.
// see https://issues.apache.org/jira/browse/KAFKA-7663
store.put(record.key(), record.value());
}
@Override
public void close() {
// No-op
}
}
}