-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
66 lines (50 loc) · 1.79 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from mlp import MLP
from dataset import MNISTDataset, TitanicDataset
from tqdm import tqdm
def mnist():
mlp = MLP([
(784, 500),
(500, 250),
(250, 10)
],
dp=0.2
)
data = MNISTDataset(data_pth="MNIST-jpg_dataset")
train_data, test_data = data.split_shuffle(0.8)
mlp.train(train_data, epochs=10, lr=0.001)
mlp.eval()
test_accuracy = []
tot_test_loss = 0
print("-----------------Test-----------------")
for _, idx in tqdm(enumerate(range(len(test_data))), total=len(test_data)):
loss, good = mlp.forward(test_data[idx])
tot_test_loss += loss.item()
test_accuracy.append(good)
print(f"Test Set Loss: ", tot_test_loss/len(test_data))
print(f"Test Accuracy: {sum(test_accuracy)/len(test_accuracy)}")
print("--------------------------------------")
# mlp.save_weights("weights.pt")
def titanic():
mlp = MLP([
(7, 100),
(100, 2)
],
dp=0.0
)
data = TitanicDataset(data_pth="titanic_dataset")
train_data, test_data = data.split_shuffle(0.8)
mlp.train(train_data, epochs=50, lr=0.0001, train_val_split=0.9)
mlp.eval()
test_accuracy = []
tot_test_loss = 0
print("-----------------Test-----------------")
for _, idx in tqdm(enumerate(range(len(test_data))), total=len(test_data)):
loss, good = mlp.forward(test_data[idx])
tot_test_loss += loss.item()
test_accuracy.append(good)
print(f"Test Set Loss: ", tot_test_loss/len(test_data))
print(f"Test Accuracy: {sum(test_accuracy)/len(test_accuracy)}")
print("--------------------------------------")
# mlp.save_weights("weights.pt")
if __name__ == "__main__":
titanic()