forked from karpathy/llama2.c
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.h
386 lines (338 loc) · 12.6 KB
/
run.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#ifndef RUN_H
#define RUN_H
#include <iostream>
#include <vector>
#include <fstream>
#include <cstdlib>
#include <cctype>
#include <ctime>
#include <cmath>
#include <cstring>
#include <fcntl.h>
#include <cstddef>
#include <memory>
#include <algorithm>
#include <chrono>
#if defined _WIN32
#include "win.h"
#else
#include <unistd.h>
#include <sys/mman.h>
#endif
extern int GS;
typedef struct {
std::unique_ptr<int8_t[]> q; // quantized values
std::unique_ptr<float[]> s; // scaling factors
} QuantizedTensor;
class Config {
public:
int dim; // transformer dimension
int hidden_dim; // for ffn layers
int n_layers; // number of layers
int n_heads; // number of query heads
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
int vocab_size; // vocabulary size, usually 256 (byte-level)
int seq_len; // max sequence length
};
template<typename T>
class TransformerWeights {
public:
// token embedding table
std::unique_ptr<float[]> token_embedding_table; // (vocab_size, dim)
// final rmsnorm
std::unique_ptr<float[]> rms_final_weight; // (dim,)
// (optional) classifier weights for the logits, on the last layer
// weights for rmsnorms
std::unique_ptr<float[]> rms_att_weight; // (layer, dim) rmsnorm weights
std::unique_ptr<float[]> rms_ffn_weight; // (layer, dim)
// weights for matmuls. note dim == n_heads * head_size
std::unique_ptr<T[]> wq; // (layer, dim, n_heads * head_size)
std::unique_ptr<T[]> wk; // (layer, dim, n_kv_heads * head_size)
std::unique_ptr<T[]> wv; // (layer, dim, n_kv_heads * head_size)
std::unique_ptr<T[]> wo; // (layer, n_heads * head_size, dim)
// weights for ffn
std::unique_ptr<T[]> w1; // (layer, hidden_dim, dim)
std::unique_ptr<T[]> w2; // (layer, dim, hidden_dim)
std::unique_ptr<T[]> w3; // (layer, hidden_dim, dim)
std::unique_ptr<T[]> wcls;
// tensor2d freq_cis_real; // [seq_len, (dim/n_heads)/2]
// tensor2d freq_cis_imag; // [seq_len, (dim/n_heads)/2]
std::unique_ptr<T[]> q_tokens; // (vocab_size, dim)
};
template<typename T>
class RunState {
public:
// current wave of activations
std::unique_ptr<float[]> x; // activation at current time stamp (dim,)
std::unique_ptr<float[]> xb; // same, but inside a residual branch (dim,)
std::unique_ptr<float[]> xb2; // an additional buffer just for convenience (dim,)
std::unique_ptr<float[]> hb; // buffer for hidden dimension in the ffn (hidden_dim,)
std::unique_ptr<float[]> hb2; // buffer for hidden dimension in the ffn (hidden_dim,)
std::unique_ptr<float[]> q; // query (dim,)
std::unique_ptr<float[]> k; // key (dim,)
std::unique_ptr<float[]> v; // value (dim,)
std::unique_ptr<float[]> att; // buffer for scores/attention values (n_heads, seq_len)
std::unique_ptr<float[]> logits; // output logits
// kv cache
std::unique_ptr<float[]> key_cache; // (layer, seq_len, dim)
std::unique_ptr<float[]> value_cache; // (layer, seq_len, dim)
};
template<>
class RunState<float> {
public:
// current wave of activations
std::unique_ptr<float[]> x; // activation at current time stamp (dim,)
std::unique_ptr<float[]> xb; // same, but inside a residual branch (dim,)
std::unique_ptr<float[]> xb2; // an additional buffer just for convenience (dim,)
std::unique_ptr<float[]> hb; // buffer for hidden dimension in the ffn (hidden_dim,)
std::unique_ptr<float[]> hb2; // buffer for hidden dimension in the ffn (hidden_dim,)
std::unique_ptr<float[]> q; // query (dim,)
std::unique_ptr<float[]> k; // key (dim,)
std::unique_ptr<float[]> v; // value (dim,)
std::unique_ptr<float[]> att; // buffer for scores/attention values (n_heads, seq_len)
std::unique_ptr<float[]> logits; // output logits
// kv cache
std::unique_ptr<float[]> key_cache; // (layer, seq_len, dim)
std::unique_ptr<float[]> value_cache; // (layer, seq_len, dim)
};
template<>
class RunState<QuantizedTensor> {
public:
// current wave of activations
std::unique_ptr<float[]> x; // activation at current time stamp (dim,)
std::unique_ptr<float[]> xb; // same, but inside a residual branch (dim,)
std::unique_ptr<float[]> xb2; // an additional buffer just for convenience (dim,)
std::unique_ptr<float[]> hb; // buffer for hidden dimension in the ffn (hidden_dim,)
std::unique_ptr<float[]> hb2; // buffer for hidden dimension in the ffn (hidden_dim,)
std::unique_ptr<float[]> q; // query (dim,)
std::unique_ptr<float[]> k; // key (dim,)
std::unique_ptr<float[]> v; // value (dim,)
std::unique_ptr<float[]> att; // buffer for scores/attention values (n_heads, seq_len)
std::unique_ptr<float[]> logits; // output logits
// kv cache
std::unique_ptr<float[]> key_cache; // (layer, seq_len, dim)
std::unique_ptr<float[]> value_cache; // (layer, seq_len, dim)
std::unique_ptr<QuantizedTensor[]> xq; // quantized x (dim,)
std::unique_ptr<QuantizedTensor[]> hq; // quantized hb (hidden_dim,)
};
typedef struct {
std::string str;
int id;
} TokenIndex;
bool compare_tokens(const TokenIndex& a, const TokenIndex& b) {
return a.str < b.str;
}
int str_lookup(const std::string& str, const std::unique_ptr<TokenIndex[]>& sorted_vocab, int vocab_size) {
// efficiently find the perfect match for str in vocab, return its index or -1 if not found
TokenIndex tok = { .str = str }; // acts as the key to search for
auto it = std::lower_bound(sorted_vocab.get(), sorted_vocab.get() + vocab_size, tok, compare_tokens);
// If we didn't reach the end and the string matches
if (it != (sorted_vocab.get() + vocab_size) && it->str == str) {
return it->id;
}
return -1; // Not found
}
template<typename T>
class Transformer {
private:
void malloc_weights();
void malloc_run_state();
public:
Config config;
TransformerWeights<T> w;
RunState<T> s;
int shared_weights = 1;
void load_model(const std::string& checkpoint_path);
float* forward(int token, int pos);
};
class Tokenizer {
public:
std::vector<std::unique_ptr<char[]>> vocab;
std::vector<float> vocab_scores;
std::unique_ptr<TokenIndex[]> sorted_vocab;
int vocab_size;
unsigned int max_token_length;
unsigned char byte_pieces[512]; // stores all single-byte strings
void build_tokenizer(const std::string& tokenizer_path, int size_for_vacab);
void encode(const std::string &text, const int8_t &bos, const int8_t &eos, std::unique_ptr<int[]> &tokens, int &n_tokens);
std::string decode(int prev_token, int token);
};
// ----------------------------------------------------------------------------
// The Sampler, which takes logits and returns a sampled token
// sampling can be done in a few ways: greedy argmax, sampling, top-p sampling
typedef struct {
float prob;
int index;
} ProbIndex; // struct used when sorting probabilities during top-p sampling
class Sampler {
private:
int sample_argmax(float* probabilities, int n);
int sample_mult(float* probabilities, int n, float coin);
int sample_topp(float* probabilities, int n, float topp, std::unique_ptr<ProbIndex[]>& probindex, float coin);
unsigned int random_u32(unsigned long long *state) {
// xorshift rng: https://en.wikipedia.org/wiki/Xorshift#xorshift.2A
*state ^= *state >> 12;
*state ^= *state << 25;
*state ^= *state >> 27;
return (*state * 0x2545F4914F6CDD1Dull) >> 32;
}
float random_f32(unsigned long long *state) { // random float32 in [0,1)
return (random_u32(state) >> 8) / 16777216.0f;
}
static bool compare_probindex(const ProbIndex& a, const ProbIndex& b) {
return a.prob > b.prob;
}
public:
int vocab_size;
std::unique_ptr<ProbIndex[]> probindex; // buffer used in top-p sampling
float temperature;
float topp;
unsigned long long rng_state;
void build_sampler(int vocab_size, float temperature, float topp, unsigned long long rng_seed);
int sample(float* logits);
};
bool is_quantized_model(const std::string& checkpoint_path) {
std::ifstream file(checkpoint_path,std::ios::binary);
if (!file) {
std::cerr << "Couldn't open file " << checkpoint_path << '\n';
std::exit(EXIT_FAILURE);
}
uint32_t magic_number;
int version;
file.read(reinterpret_cast<char*> (&magic_number),sizeof(uint32_t));
file.read(reinterpret_cast<char*> (&version),sizeof(int));
file.close();
if (magic_number != 0x616b3432 || version!= 2) {
return false;
}
return true;
}
void safe_print(const std::string& piece) {
if (piece.empty()) {
return;
}
if (piece.size() == 1) {
unsigned char byte_val = piece[0];
if (!(isprint(byte_val) || isspace(byte_val))) {
return; // bad byte, don't print it
}
}
std::cout << piece;
}
long time_in_ms() {
// return time in milliseconds, for benchmarking the model speed
auto now = std::chrono::system_clock::now().time_since_epoch();
return std::chrono::duration_cast<std::chrono::milliseconds>(now).count();
}
void softmax(float* x, int size) {
// find max value (for numerical stability)
float max_val = x[0];
for (int i = 1; i < size; i++) {
if (x[i] > max_val) {
max_val = x[i];
}
}
// exp and sum
float sum = 0.0f;
for (int i = 0; i < size; i++) {
x[i] = expf(x[i] - max_val);
sum += x[i];
}
// normalize
for (int i = 0; i < size; i++) {
x[i] /= sum;
}
}
void rmsnorm(float* o, float* x, float* weight, int size) {
// calculate sum of squares
float ss = 0.0f;
for (int j = 0; j < size; j++) {
ss += x[j] * x[j];
}
ss /= size;
ss += 1e-5f;
ss = 1.0f / sqrtf(ss);
// normalize and scale
for (int j = 0; j < size; j++) {
o[j] = weight[j] * (ss * x[j]);
}
}
void matmul(float* xout, float* x, float* w, int n, int d) {
// W (d,n) @ x (n,) -> xout (d,)
// by far the most amount of time is spent inside this little function
int i;
#pragma omp parallel for private(i)
for (i = 0; i < d; i++) {
float val = 0.0f;
for (int j = 0; j < n; j++) {
val += w[i * n + j] * x[j];
}
xout[i] = val;
}
}
void q_matmul(float* xout, QuantizedTensor *x, QuantizedTensor *w, int n, int d) {
// W (d,n) @ x (n,) -> xout (d,)
// by far the most amount of time is spent inside this little function
// inputs to this function are both quantized
int i;
#pragma omp parallel for private(i)
for (i = 0; i < d; i++) {
float val = 0.0f;
int32_t ival = 0;
int in = i * n;
// do the matmul in groups of GS
int j;
for (j = 0; j <= n - GS; j += GS) {
for (int k = 0; k < GS; k++) {
ival += ((int32_t) x->q[j + k]) * ((int32_t) w->q[in + j + k]);
}
val += ((float) ival) * w->s[(in + j) / GS] * x->s[j / GS];
ival = 0;
}
xout[i] = val;
}
}
void read_stdin(const std::string& guide, std::string& buffer, size_t max_len) {
std::cout << guide;
std::getline(std::cin, buffer);
if(buffer.length() > max_len) {
buffer.resize(max_len);
}
}
void dequantize(QuantizedTensor *qx, float* x, int n) {
for (int i = 0; i < n; i++) {
x[i] = qx->q[i] * qx->s[i / GS];
}
}
void quantize(QuantizedTensor *qx, float* x, int n) {
int num_groups = n / GS;
float Q_MAX = 127.0f;
for (int group = 0; group < num_groups; group++) {
// find the max absolute value in the current group
float wmax = 0.0;
for (int i = 0; i < GS; i++) {
float val = fabs(x[group * GS + i]);
if (val > wmax) {
wmax = val;
}
}
// calculate and write the scaling factor
float scale = wmax / Q_MAX;
qx->s[group] = scale;
// calculate and write the quantized values
for (int i = 0; i < GS; i++) {
float quant_value = x[group * GS + i] / scale; // scale
int8_t quantized = (int8_t) round(quant_value); // round and clamp
qx->q[group * GS + i] = quantized;
}
}
}
void init_quantized_tensors(std::ifstream& file, QuantizedTensor* w, int n_layers, int each_layer) {
for(int i = 0; i < n_layers; i++) {
w[i].q = std::make_unique<int8_t[]>(each_layer);
w[i].s = std::make_unique<float[]>(each_layer / GS);
file.read(reinterpret_cast<char*>(w[i].q.get()), each_layer * sizeof(int8_t));
file.read(reinterpret_cast<char*>(w[i].s.get()), each_layer / GS * sizeof(float));
}
}
#endif