diff --git a/covid_xprize/examples/predictors/conditional_lstm/conditional_xprize_predictor.py b/covid_xprize/examples/predictors/conditional_lstm/conditional_xprize_predictor.py index c652896..178d9a6 100644 --- a/covid_xprize/examples/predictors/conditional_lstm/conditional_xprize_predictor.py +++ b/covid_xprize/examples/predictors/conditional_lstm/conditional_xprize_predictor.py @@ -51,7 +51,8 @@ def train(self, nb_training_geos: int = NB_TRAINING_DAYS, nb_testing_geos: int = NB_TESTING_GEOS, nb_trials: int = NUM_TRIALS, - nb_epochs: int = NUM_EPOCHS,) -> Union[Model, tuple[Model, dict]]: + nb_epochs: int = NUM_EPOCHS, + return_all_trials: bool = False) -> Union[Model, tuple[Model, dict]]: best_model, results_df = train_predictor( training_data=self.df, nb_lookback_days=NB_LOOKBACK_DAYS, @@ -62,6 +63,7 @@ def train(self, nb_trials=nb_trials, nb_epochs=nb_epochs, lstm_size=LSTM_SIZE, + return_all_trials=return_all_trials ) if return_results: return best_model, results_df diff --git a/covid_xprize/examples/predictors/conditional_lstm/train_predictor.py b/covid_xprize/examples/predictors/conditional_lstm/train_predictor.py index 6a81d9a..dc4e734 100644 --- a/covid_xprize/examples/predictors/conditional_lstm/train_predictor.py +++ b/covid_xprize/examples/predictors/conditional_lstm/train_predictor.py @@ -40,6 +40,7 @@ def train_predictor(training_data: pd.DataFrame, nb_trials: int, nb_epochs: int, lstm_size: int, + return_all_trials: bool = False, verbose = False) -> tuple[Model, pd.DataFrame]: """Trains a prediction model using the given hyperparameter arguments. :param nb_lookback_days: This option is not fully implemented yet. Completing implementation @@ -65,6 +66,7 @@ def train_predictor(training_data: pd.DataFrame, :param context_column: Which column in the data df to use as context and outcome. :param arch: Which predictor architecture to use. Current options are 'conditional' and 'independent'. + :param return_all_trials: If set to True, then this function returns all trials as a list of trained models. :param verbose: Verbosity level for model.fit() when training the predictor. :returns: (best_model, results_df) """ @@ -181,10 +183,13 @@ def train_predictor(training_data: pd.DataFrame, 'test_loss': test_losses, 'test_case_mae': test_case_maes}) - # Select best model - print("Best test case mae:", np.min(test_case_maes)) - best_model = models[np.argmin(test_case_maes)] - return best_model, results_df + if return_all_trials: + return models, results_df + else: + # Select best model + print("Best test case mae:", np.min(test_case_maes)) + best_model = models[np.argmin(test_case_maes)] + return best_model, results_df # Shuffling data prior to train/val split diff --git a/covid_xprize/examples/predictors/lstm/xprize_predictor.py b/covid_xprize/examples/predictors/lstm/xprize_predictor.py index aa5c691..0aac9db 100644 --- a/covid_xprize/examples/predictors/lstm/xprize_predictor.py +++ b/covid_xprize/examples/predictors/lstm/xprize_predictor.py @@ -214,7 +214,12 @@ def _convert_ratios_to_total_cases(self, def _smooth_case_list(case_list, window): return pd.Series(case_list).rolling(window).mean().to_numpy() - def train(self, num_trials=NUM_TRIALS, num_epochs=NUM_EPOCHS): + def train(self, num_trials=NUM_TRIALS, num_epochs=NUM_EPOCHS, return_all_trials=False): + """Trains the weights of the predictor model on a prediction loss. + :param num_trials: The number of LSTM models to train. The top performer is selected. + :param num_epochs: The number of iterations through the training data performed. + :param return_all_trials: If set to True, then this function returns all trials as a list. + """ print("Creating numpy arrays for Keras for each country...") geos = self._most_affected_geos(self.df, MAX_NB_COUNTRIES, NB_LOOKBACK_DAYS) country_samples = create_country_samples(self.df, geos, CONTEXT_COLUMN, NB_TEST_DAYS, NB_LOOKBACK_DAYS) @@ -277,6 +282,10 @@ def train(self, num_trials=NUM_TRIALS, num_epochs=NUM_EPOCHS): print('Val Loss:', val_loss) print('Test Loss:', test_loss) + if return_all_trials: + # Shortcut to avoid model evaluation & winner selection. + return models + # Gather test info country_indeps = [] country_predss = [] diff --git a/requirements.txt b/requirements.txt index c74a9fd..971a6dc 100644 --- a/requirements.txt +++ b/requirements.txt @@ -5,8 +5,8 @@ numpy==1.24.2 notebook==6.5.3 scikit-learn==1.2.2 scipy==1.10.1 -tensorflow==2.11.1 -keras==2.11.0 +tensorflow==2.13.0 +keras==2.13.1 neat-python==0.92 h5py==3.8.0 diff --git a/setup.py b/setup.py index 92a3b27..47d823f 100644 --- a/setup.py +++ b/setup.py @@ -7,7 +7,7 @@ import sys from setuptools import setup, find_packages -LIBRARY_VERSION = '2.0.2' +LIBRARY_VERSION = '2.0.3' CURRENT_PYTHON = sys.version_info[:2] REQUIRED_PYTHON = (3, 10) @@ -61,14 +61,14 @@ def read(fname): ] }, install_requires=[ - 'keras==2.11.0', 'neat-python==0.92', 'numpy==1.24.2', 'pandas==1.5.3', 'scikit-learn==1.2.2', 'scipy==1.10.1', 'setuptools==67.6.0', - 'tensorflow==2.11.1', + 'tensorflow==2.13.0', + 'keras==2.13.1', 'h5py==3.8.0' ], description='Contains sample code and notebooks '