-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
307 lines (262 loc) · 11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# import argparse
import json
import os
import random
from datetime import datetime
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from PIL import Image
from RealESRGAN.realesrgan import RealESRGAN
workers = 2
original_batch_size = 128
image_size = 64
nc = 3 # Number of channels in the training images. For color images this is 3
nz = 100 # Size of z latent vector (i.e. size of generator input)
ngf = 64 # Size of feature maps in generator
ndf = 64 # Size of feature maps in discriminator
lr = 0.0002 # Learning rate for optimizers
beta1 = 0.5 # Beta1 hyper-param for Adam optimizers
ngpu = 1 # Number of GPUs available. Use 0 for CPU mode.
outputPath = "ResultImages/"
def train(epoch, directory, dsPath, dsName):
manualSeed = 999
random.seed(manualSeed)
torch.manual_seed(manualSeed)
with open(directory + '/vars.json') as f:
dataJson = json.load(f)
cudnn.benchmark = True
# Root directory for dataset
dataroot = dsPath
pathNetG = directory + "/gen.pth"
pathNetD = directory + "/dis.pth"
dataset = dset.ImageFolder(root=dataroot,
transform=transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
# Create the dataloader
dataloader = torch.utils.data.DataLoader(dataset, batch_size=original_batch_size,
shuffle=True, num_workers=workers)
# Decide which device we want to run on
print(torch.cuda.is_available())
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
print(device)
netG = Generator(ngpu).to(device)
netG.apply(weights_init)
if dataJson['epochs'] != 0:
netG.load_state_dict(torch.load(pathNetG))
print("NetG loaded")
class Discriminator(nn.Module):
def __init__(self, ngpu):
super(Discriminator, self).__init__()
self.ngpu = ngpu
self.main = nn.Sequential(
# input is (nc) x 64 x 64
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf) x 32 x 32
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*2) x 16 x 16
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*4) x 8 x 8
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*8) x 4 x 4
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
if input.is_cuda and self.ngpu > 1:
output = nn.parallel.data_parallel(self.main, input, range(self.ngpu))
else:
output = self.main(input)
return output.view(-1, 1).squeeze(1)
netD = Discriminator(ngpu).to(device)
netD.apply(weights_init)
if dataJson['epochs'] != 0:
netD.load_state_dict(torch.load(pathNetD))
print("NetD loaded")
criterion = nn.BCELoss()
fixed_noise = torch.randn(original_batch_size, nz, 1, 1, device=device)
real_label = 1
fake_label = 0
# Number of training epochs
num_epochs = epoch
netG = Generator(ngpu).to(device)
netG.apply(weights_init)
if dataJson['epochs'] != 0:
netG.load_state_dict(torch.load(pathNetG))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
print("OptimizerG loaded")
netD = Discriminator(ngpu).to(device)
netD.apply(weights_init)
if dataJson['epochs'] != 0:
netD.load_state_dict(torch.load(pathNetD))
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
print("OptimizerD loaded")
# setup optimizer
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
print("Start training")
netG.train()
netD.train()
if not os.path.exists(outputPath + dsName):
os.makedirs(outputPath + dsName)
for epoch in range(num_epochs):
print(f"Epoch {dataJson['epochs'] + 1}")
for i, data in enumerate(dataloader, 0):
############################
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
###########################
# train with real
netD.zero_grad()
real_cpu = data[0].to(device)
batch_size = real_cpu.size(0)
label = torch.full((batch_size,), real_label,
dtype=real_cpu.dtype, device=device)
output = netD(real_cpu)
errD_real = criterion(output, label)
errD_real.backward()
D_x = output.mean().item()
# train with fake
noise = torch.randn(batch_size, nz, 1, 1, device=device)
fake = netG(noise)
label.fill_(fake_label)
output = netD(fake.detach())
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
############################
# (2) Update G network: maximize log(D(G(z)))
###########################
netG.zero_grad()
label.fill_(real_label) # fake labels are real for generator cost
output = netD(fake)
errG = criterion(output, label)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()
if i % 50 == 0:
print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f'
% (epoch, num_epochs, i, len(dataloader),
errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
if i % 30 == 0:
fake = netG(fixed_noise)
vutils.save_image(fake.detach(),
'%s/fake_%s.png' % (outputPath + dsName,
str(datetime.now().strftime("%d_%m_%Y_%H_%M_%S"))),
normalize=True)
dataJson['epochs'] += 1
netG.eval()
netD.eval()
torch.save(netG.state_dict(), pathNetG)
torch.save(netD.state_dict(), pathNetD)
with open(directory + "/vars.json", "w") as f:
json.dump(dataJson, f)
print("Training finished")
def generate(datasetName, seed, show_images, count_of_images=10, ):
directory = f"Datasets/{datasetName}"
random.seed(seed)
torch.manual_seed(seed)
with open(directory + "/vars.json") as f:
dataJson = json.load(f)
pathNetG = directory + "/gen.pth"
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
netG = Generator(ngpu).to(device)
netG.apply(weights_init)
if dataJson['epochs'] != 0:
netG.load_state_dict(torch.load(pathNetG))
print("NetG loaded")
model = RealESRGAN(device, scale=2)
model.load_weights('RealESRGAN/weights/RealESRGAN_x2.pth')
def improve_quality(in_model, path):
image = Image.open(path).convert('RGB')
sr_image = in_model.predict(image)
if show_images:
sr_image.show()
sr_image.save(path)
netG.eval()
with torch.no_grad():
for i in range(int(count_of_images)):
z = torch.randn(1, 100, 1, 1, device=device)
fake = netG(z).detach().cpu()
dataset_output = outputPath + datasetName
if not os.path.exists(dataset_output):
os.makedirs(dataset_output)
outputPathOneImage = dataset_output + f"/generated_{dataJson['image_iterator']}" + ".png"
vutils.save_image(fake, outputPathOneImage, normalize=True)
resize_image(outputPathOneImage, outputPathOneImage, size=(512, 512))
try:
print("Trying improve quality of image...")
improve_quality(model, outputPathOneImage)
print("Quality improvement finished!")
except RuntimeError:
print("Cannot improve quality")
print(f"Image {dataJson['image_iterator']} saved in {outputPathOneImage}")
dataJson['image_iterator'] += 1
with open(directory + '/vars.json', "w") as f:
json.dump(dataJson, f)
print("Images generation finished!")
def resize_image(input_image_path, output_image_path, size):
original_image = Image.open(input_image_path)
width, height = original_image.size
print(f"The original image size is {width} wide x {height} high")
resized_image = original_image.resize(size)
width, height = resized_image.size
print(f"The resized image size is {width} wide x {height} high")
resized_image.save(output_image_path)
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
torch.nn.init.normal_(m.weight, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
torch.nn.init.normal_(m.weight, 1.0, 0.02)
torch.nn.init.zeros_(m.bias)
class Generator(nn.Module):
def __init__(self, ngpu):
super(Generator, self).__init__()
self.ngpu = ngpu
self.main = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
# state size. (ngf*8) x 4 x 4
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
# state size. (ngf*4) x 8 x 8
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
# state size. (ngf*2) x 16 x 16
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
# state size. (ngf) x 32 x 32
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (nc) x 64 x 64
)
def forward(self, input):
if input.is_cuda and self.ngpu > 1:
output = nn.parallel.data_parallel(self.main, input, range(self.ngpu))
else:
output = self.main(input)
return output