摄像头模组是智能手机最为重要的组成部分之一。随着智能手机行业的快速发展,摄像头模组的需求量增加。高像素摄像头的出现,对模组检测精度要求提出了新的挑战。
项目中以手机镜头为例,向大家介绍如何快速使用实例分割方式进行缺陷检测。
数据集中包含了992张已经标注好的数据,标注形式为MSCOCO的实例分割格式。点击此处下载数据集
更多数据格式信息请参考数据标注说明文档
- 数据切分 将训练集、验证集和测试集按照7:2:1的比例划分。
paddlex --split_dataset --format COCO --dataset_dir dataset --val_value 0.2 --test_value 0.1
dataset/ dataset/
├── JPEGImages/ --> ├── JPEGImages/
├── annotations.json ├── annotations.json
├── test.json
├── train.json
├── val.json
PaddleX提供了丰富的视觉模型,在实例分割中提供了MaskRCNN系列模型.在本项目中采用Mask-RCNN算法
在项目中,我们采用Mask-RCNN作为镜头缺陷检测的模型。具体代码请参考train.py 运行如下代码开始训练模型:
python code/train.py
若输入如下代码,则可在log文件中查看训练日志
python code/train.py > log
- 训练过程说明
# 定义训练和验证时的transforms
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py
train_transforms = T.Compose([
T.RandomResizeByShort(
short_sizes=[640, 672, 704, 736, 768, 800],
max_size=1333,
interp='CUBIC'), T.RandomHorizontalFlip(), T.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
eval_transforms = T.Compose([
T.ResizeByShort(
short_size=800, max_size=1333, interp='CUBIC'), T.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 定义训练和验证所用的数据集
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/paddlex/cv/datasets/coco.py#L26
train_dataset = pdx.datasets.CocoDetection(
data_dir='dataset/JPEGImages',
ann_file='dataset/train.json',
# num_workers=0, # 注意:若运行时报错则添加该句
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.CocoDetection(
data_dir='dataset/JPEGImages',
ann_file='dataset/val.json',
# num_workers=0, # 注意:若运行时报错则添加该句
transforms=eval_transforms)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/tree/release/2.0-rc/tutorials/train#visualdl可视化训练指标
num_classes = len(train_dataset.labels)
model = pdx.models.MaskRCNN(
num_classes=num_classes, backbone='ResNet50', with_fpn=True)
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/models/detector.py#L155
# 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
model.train(
num_epochs=12,
train_dataset=train_dataset,
train_batch_size=1,
eval_dataset=eval_dataset,
learning_rate=0.00125,
lr_decay_epochs=[8, 11],
warmup_steps=10,
warmup_start_lr=0.0,
save_dir='output/mask_rcnn_r50_fpn',
use_vdl=True)
在模型训练过程,在train
函数中,将use_vdl
设为True,则训练过程会自动将训练日志以VisualDL的格式打点在save_dir
(用户自己指定的路径)下的vdl_log
目录。
用户可以使用如下命令启动VisualDL服务,查看可视化指标
visualdl --logdir output/mask_rcnn_r50_fpn/vdl_log --port 8001
服务启动后,按照命令行提示,使用浏览器打开 http://localhost:8001/
模型训练处理被保存在了output文件夹,此时模型文件还是动态图文档,需要导出成静态图的模型才可以进一步部署预测,运行如下命令,会自动在output文件夹下创建一个inference_model
的文件夹,用来存放预测好的模型。
paddlex --export_inference --model_dir=output/mask_rcnn_r50_fpn/best_model --save_dir=output/inference_model
运行如下代码:
python code/infer.py
文件内容如下:
import glob
import numpy as np
import threading
import time
import random
import os
import base64
import cv2
import json
import paddlex as pdx
image_name = 'dataset/JPEGImages/Image_370.jpg'
model = pdx.load_model('output/mask_rcnn_r50_fpn/best_model')
img = cv2.imread(image_name)
result = model.predict(img)
keep_results = []
areas = []
f = open('result.txt','a')
count = 0
for dt in np.array(result):
cname, bbox, score = dt['category'], dt['bbox'], dt['score']
if score < 0.5:
continue
keep_results.append(dt)
count+=1
f.write(str(dt)+'\n')
f.write('\n')
areas.append(bbox[2] * bbox[3])
areas = np.asarray(areas)
sorted_idxs = np.argsort(-areas).tolist()
keep_results = [keep_results[k]
for k in sorted_idxs] if len(keep_results) > 0 else []
print(keep_results)
print(count)
f.write("the total number is :"+str(int(count)))
f.close()
pdx.det.visualize(image_name, result, threshold=0.5, save_dir='./output/mask_rcnn_r50_fpn')
则可生成result.txt文件并显示预测结果图片,result.txt文件中会显示图片中每个检测框的位置、类别及置信度,并给出检测框的总个数.
预测结果如下: