-
Notifications
You must be signed in to change notification settings - Fork 96
/
ica.py
272 lines (220 loc) · 8.56 KB
/
ica.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Author: Pierre Lafaye de Micheaux, Stefan van der Walt
# Python FastICA
# License: GPL unless permission obtained otherwise
# Look at algorithms in Tables 8.3 and 8.4 page 196 in the book: Independent Component Analysis, by Aapo et al.
import numpy as np
import types
__all__ = ['fastica']
def _gs_decorrelation(w, W, j):
""" Gram-Schmidt-like decorrelation. """
t = np.zeros_like(w)
for u in range(j):
t = t + np.dot(w, W[u]) * W[u]
w -= t
return w
def _ica_def(X, tol, g, gprime, fun_args, maxit, w_init):
"""Deflationary FastICA using fun approx to neg-entropy function
Used internally by FastICA.
"""
n_comp = w_init.shape[0]
W = np.zeros((n_comp, n_comp), dtype=float)
# j is the index of the extracted component
for j in range(n_comp):
w = w_init[j, :].copy()
w /= np.sqrt((w**2).sum())
n_iterations = 0
# we set lim to tol+1 to be sure to enter at least once in next while
lim = tol + 1
while ((lim > tol) & (n_iterations < (maxit-1))):
wtx = np.dot(w.T, X)
gwtx = g(wtx, fun_args)
g_wtx = gprime(wtx, fun_args)
w1 = (X * gwtx).mean(axis=1) - g_wtx.mean() * w
_gs_decorrelation(w1, W, j)
w1 /= np.sqrt((w1**2).sum())
lim = np.abs(np.abs((w1 * w).sum()) - 1)
w = w1
n_iterations = n_iterations + 1
W[j, :] = w
return W
def _sym_decorrelation(W):
""" Symmetric decorrelation """
K = np.dot(W, W.T)
s, u = np.linalg.eigh(K)
# u (resp. s) contains the eigenvectors (resp. square roots of
# the eigenvalues) of W * W.T
u, W = [np.asmatrix(e) for e in (u, W)]
W = (u * np.diag(1.0/np.sqrt(s)) * u.T) * W # W = (W * W.T) ^{-1/2} * W
return W
def _ica_par(X, tol, g, gprime, fun_args, maxit, w_init):
"""Parallel FastICA.
Used internally by FastICA.
"""
n,p = X.shape
W = _sym_decorrelation(w_init)
# we set lim to tol+1 to be sure to enter at least once in next while
lim = tol + 1
it = 0
while ((lim > tol) and (it < (maxit-1))):
wtx = np.dot(W, X).A # .A transforms to array type
gwtx = g(wtx, fun_args)
g_wtx = gprime(wtx, fun_args)
W1 = np.dot(gwtx, X.T)/float(p) - np.dot(np.diag(g_wtx.mean(axis=1)), W)
W1 = _sym_decorrelation(W1)
lim = max(abs(abs(np.diag(np.dot(W1, W.T))) - 1))
W = W1
it = it + 1
return W
def fastica(X, n_comp=None,
algorithm="parallel", whiten=True, fun="logcosh", fun_prime='',
fun_args={}, maxit=200, tol=1e-04, w_init=None):
"""Perform Fast Independent Component Analysis.
Parameters
----------
X : (n,p) array
Array with n observations (statistical units) measured on p variables.
n_comp : int, optional
Number of components to extract. If None no dimension reduction
is performed.
algorithm : {'parallel','deflation'}
Apply an parallel or deflational FASTICA algorithm.
whiten: boolean, optional
If true perform an initial whitening of the data. Do not set to
false unless the data is already white, as you will get incorrect
results.
If whiten is true, the data is assumed to have already been
preprocessed: it should be centered, normed and white.
fun : String or Function
The functional form of the G function used in the
approximation to neg-entropy. Could be either 'logcosh', 'exp',
or 'cube'.
You can also provide your own function but in this case, its
derivative should be provided via argument fun_prime
fun_prime : Empty string ('') or Function
See fun.
fun_args : Optional dictionnary
If empty and if fun='logcosh', fun_args will take value
{'alpha' : 1.0}
maxit : int
Maximum number of iterations to perform
tol : float
A positive scalar giving the tolerance at which the
un-mixing matrix is considered to have converged
w_init : (n_comp,n_comp) array
Initial un-mixing array of dimension (n.comp,n.comp).
If None (default) then an array of normal r.v.'s is used
source_only: if True, only the sources matrix is returned
Results
-------
K : (p,n_comp) array
pre-whitening matrix that projects data onto th first n.comp
principal components. Returned only if whiten is True
W : (n_comp,n_comp) array
estimated un-mixing matrix
The mixing matrix can be obtained by::
w = np.asmatrix(W) * K.T
A = w.T * (w * w.T).I
S : (n,n_comp) array
estimated source matrix
Examples
--------
>>> X = np.array(
[[5.,1.4,1.9,0], \
[2,5.4,8.,1.1], \
[3,6.4,9,1.2]])
>>> w_init = np.array([[1,4],[7,2]])
>>> n_comp = 2
>>> k, W, S = fastica(X, n_comp, algorithm='parallel', w_init=w_init)
>>> print S
[[-0.02387286 -1.41401205]
[ 1.23650679 0.68633152]
[-1.21263393 0.72768053]]
Notes
-----
The data matrix X is considered to be a linear combination of
non-Gaussian (independent) components i.e. X = SA where columns of S
contain the independent components and A is a linear mixing
matrix. In short ICA attempts to `un-mix' the data by estimating an
un-mixing matrix W where XW = S.
Implemented using FastICA:
A. Hyvarinen and E. Oja, Independent Component Analysis:
Algorithms and Applications, Neural Networks, 13(4-5), 2000,
pp. 411-430
"""
algorithm_funcs = {'parallel': _ica_par,
'deflation': _ica_def}
alpha = fun_args.get('alpha',1.0)
if (alpha < 1) or (alpha > 2):
raise ValueError("alpha must be in [1,2]")
if type(fun) is types.StringType:
# Some standard nonlinear functions
if fun == 'logcosh':
def g(x, fun_args):
alpha = fun_args.get('alpha', 1.0)
return np.tanh(alpha * x)
def gprime(x, fun_args):
alpha = fun_args.get('alpha', 1.0)
return alpha * (1 - (np.tanh(alpha * x))**2)
elif fun == 'exp':
def g(x, fun_args):
return x * np.exp(-(x**2)/2)
def gprime(x, fun_args):
return (1 - x**2) * np.exp(-(x**2)/2)
elif fun == 'cube':
def g(x, fun_args):
return x**3
def gprime(x, fun_args):
return 3*x**2
else:
raise ValueError(
'fun argument should be one of logcosh, exp or cube')
elif type(fun) is not types.FunctionType:
raise ValueError('fun argument should be either a string '
'(one of logcosh, exp or cube) or a function')
else:
def g(x, fun_args):
return fun(x, **fun_args)
def gprime(x, fun_args):
return fun_prime(x, **fun_args)
n, p = X.shape
if n_comp is None:
n_comp = min(n, p)
if (n_comp > min(n, p)):
n_comp = min(n, p)
print("n_comp is too large: it will be set to %s" % n_comp)
if whiten:
# Centering the columns (ie the variables)
X = X - X.mean(axis=0)
# Whitening and preprocessing by PCA
_, d, v = np.linalg.svd(X, full_matrices=False)
del _
# XXX: Maybe we could provide a mean to estimate n_comp if it has not
# been provided ??? So that we do not have to perform another PCA
# before calling fastica ???
K = (v*(np.sqrt(n)/d)[:, np.newaxis])[:n_comp] # see (6.33) p.140
del v, d
X1 = np.dot(K, X.T) # see (13.6) p.267 Here X1 is white and data in X has been projected onto a subspace by PCA
else:
X1 = X.T
if w_init is None:
w_init = np.random.normal(size=(n_comp, n_comp))
else:
w_init = np.asarray(w_init)
if w_init.shape != (n_comp,n_comp):
raise ValueError("w_init has invalid shape -- should be %(shape)s"
% {'shape': (n_comp,n_comp)})
kwargs = {'tol': tol,
'g': g,
'gprime': gprime,
'fun_args': fun_args,
'maxit': maxit,
'w_init': w_init}
func = algorithm_funcs.get(algorithm, 'parallel')
W = func(X1, **kwargs)
del X1
if whiten:
S = np.dot(np.asmatrix(W) * K, X.T)
return [np.asarray(e.T) for e in (K, W, S)]
else:
S = np.dot(W, X.T)
return [np.asarray(e.T) for e in (W, S)]