Skip to content

Latest commit

 

History

History
14 lines (7 loc) · 2.64 KB

README.md

File metadata and controls

14 lines (7 loc) · 2.64 KB

ADM 2017

This is the repository for the code in the paper Incorporating Features Learned by an Enhanced Deep Knowledge Tracing Model for STEM/Non-STEM Job Prediction.

Abstract

The 2017 ASSISTments Data Mining competition\footnote aims to use data from a longitudinal study for predicting a brand-new outcome of students which had never been studied before by the educational data mining research community. Specifically, it facilitates research in developing predictive models that predict whether the first job of a student out of college belongs to a STEM (the acronym for science, technology, engineering, and mathematics) field. This is based on the student's learning history on the ASSISTments blended learning platform in the form of extensive clickstream data gathered during the middle school years. To tackle this challenge, we first estimate the expected knowledge state of students with respect to different mathematical skills using a deep knowledge tracing (DKT) model and an enhanced DKT (DKT+) model. We then combine the features corresponding to the DKT/DKT+ expected knowledge state with other features extracted directly from the student profile in the dataset to train several machine learning models for the STEM/non-STEM job prediction. Our experiments show that models trained with the combined features generally perform better than the models trained with the student profile alone. Detailed analysis on the student's knowledge state reveals that, when compared with non-STEM students, STEM students generally show a higher mastery level and a higher learning gain in mathematics.

Description of files

main.py, model.py, utils.py, and load_data.py are the DKT+ implementation. It is adopted from this github. The trained model is stored in ./dkt_models/assistmnet_challenge with a sample demo sample_experiment.ipynb which demonstrate how to load the model and use it to generate ./data/students_knowledge_states_dktp.csv and ./data/students_knowledge_states_dkt.csv. These two files are the predicted knowledge state obtained for each student from the DKT+ model and the DKT model, respectively. All of the above files support pave the path to the experiment of our paper.

The experiment results in the sections 4.3 and 5.1 are obtained from modifying and running the main_experiment.ipynb. The DKT and the DKT+ knowledge state comparison and the normalize learning gain (NLG) in the discussionare are obtained from KnowledgeTrend.ipynb and KnowledgeStateDimensionReduction.ipynb.