forked from zhirongw/lemniscate.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
136 lines (111 loc) · 5.42 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
import time
import datasets
from lib.utils import AverageMeter
import torchvision.transforms as transforms
import numpy as np
def NN(epoch, net, lemniscate, trainloader, testloader, recompute_memory=0):
net.eval()
net_time = AverageMeter()
cls_time = AverageMeter()
losses = AverageMeter()
correct = 0.
total = 0
testsize = testloader.dataset.__len__()
trainFeatures = lemniscate.memory.t()
if hasattr(trainloader.dataset, 'imgs'):
trainLabels = torch.LongTensor([y for (p, y) in trainloader.dataset.imgs]).cuda()
else:
trainLabels = torch.LongTensor(trainloader.dataset.train_labels).cuda()
if recompute_memory:
transform_bak = trainloader.dataset.transform
trainloader.dataset.transform = testloader.dataset.transform
temploader = torch.utils.data.DataLoader(trainloader.dataset, batch_size=100, shuffle=False, num_workers=1)
for batch_idx, (inputs, targets, indexes) in enumerate(temploader):
targets = targets.cuda(async=True)
batchSize = inputs.size(0)
features = net(inputs)
trainFeatures[:, batch_idx*batchSize:batch_idx*batchSize+batchSize] = features.data.t()
trainLabels = torch.LongTensor(temploader.dataset.train_labels).cuda()
trainloader.dataset.transform = transform_bak
end = time.time()
with torch.no_grad():
for batch_idx, (inputs, targets, indexes) in enumerate(testloader):
targets = targets.cuda(async=True)
batchSize = inputs.size(0)
features = net(inputs)
net_time.update(time.time() - end)
end = time.time()
dist = torch.mm(features, trainFeatures)
yd, yi = dist.topk(1, dim=1, largest=True, sorted=True)
candidates = trainLabels.view(1,-1).expand(batchSize, -1)
retrieval = torch.gather(candidates, 1, yi)
retrieval = retrieval.narrow(1, 0, 1).clone().view(-1)
yd = yd.narrow(1, 0, 1)
total += targets.size(0)
correct += retrieval.eq(targets.data).sum().item()
cls_time.update(time.time() - end)
end = time.time()
print('Test [{}/{}]\t'
'Net Time {net_time.val:.3f} ({net_time.avg:.3f})\t'
'Cls Time {cls_time.val:.3f} ({cls_time.avg:.3f})\t'
'Top1: {:.2f}'.format(
total, testsize, correct*100./total, net_time=net_time, cls_time=cls_time))
return correct/total
def kNN(epoch, net, lemniscate, trainloader, testloader, K, sigma, recompute_memory=0):
net.eval()
net_time = AverageMeter()
cls_time = AverageMeter()
total = 0
testsize = testloader.dataset.__len__()
trainFeatures = lemniscate.memory.t()
if hasattr(trainloader.dataset, 'imgs'):
trainLabels = torch.LongTensor([y for (p, y) in trainloader.dataset.imgs]).cuda()
else:
trainLabels = torch.LongTensor(trainloader.dataset.train_labels).cuda()
C = trainLabels.max() + 1
if recompute_memory:
transform_bak = trainloader.dataset.transform
trainloader.dataset.transform = testloader.dataset.transform
temploader = torch.utils.data.DataLoader(trainloader.dataset, batch_size=100, shuffle=False, num_workers=1)
for batch_idx, (inputs, targets, indexes) in enumerate(temploader):
targets = targets.cuda(async=True)
batchSize = inputs.size(0)
features = net(inputs)
trainFeatures[:, batch_idx*batchSize:batch_idx*batchSize+batchSize] = features.data.t()
trainLabels = torch.LongTensor(temploader.dataset.train_labels).cuda()
trainloader.dataset.transform = transform_bak
top1 = 0.
top5 = 0.
end = time.time()
with torch.no_grad():
retrieval_one_hot = torch.zeros(K, C).cuda()
for batch_idx, (inputs, targets, indexes) in enumerate(testloader):
end = time.time()
targets = targets.cuda(async=True)
batchSize = inputs.size(0)
features = net(inputs)
net_time.update(time.time() - end)
end = time.time()
dist = torch.mm(features, trainFeatures)
yd, yi = dist.topk(K, dim=1, largest=True, sorted=True)
candidates = trainLabels.view(1,-1).expand(batchSize, -1)
retrieval = torch.gather(candidates, 1, yi)
retrieval_one_hot.resize_(batchSize * K, C).zero_()
retrieval_one_hot.scatter_(1, retrieval.view(-1, 1), 1)
yd_transform = yd.clone().div_(sigma).exp_()
probs = torch.sum(torch.mul(retrieval_one_hot.view(batchSize, -1 , C), yd_transform.view(batchSize, -1, 1)), 1)
_, predictions = probs.sort(1, True)
# Find which predictions match the target
correct = predictions.eq(targets.data.view(-1,1))
cls_time.update(time.time() - end)
top1 = top1 + correct.narrow(1,0,1).sum().item()
top5 = top5 + correct.narrow(1,0,5).sum().item()
total += targets.size(0)
print('Test [{}/{}]\t'
'Net Time {net_time.val:.3f} ({net_time.avg:.3f})\t'
'Cls Time {cls_time.val:.3f} ({cls_time.avg:.3f})\t'
'Top1: {:.2f} Top5: {:.2f}'.format(
total, testsize, top1*100./total, top5*100./total, net_time=net_time, cls_time=cls_time))
print(top1*100./total)
return top1/total