forked from NVlabs/MUNIT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
109 lines (95 loc) · 4.36 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from __future__ import print_function
from utils import get_config, pytorch03_to_pytorch04
from trainer import MUNIT_Trainer, UNIT_Trainer
import argparse
from torch.autograd import Variable
import torchvision.utils as vutils
import sys
import torch
import os
from torchvision import transforms
from PIL import Image
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, help="net configuration")
parser.add_argument('--input', type=str, help="input image path")
parser.add_argument('--output_folder', type=str, help="output image path")
parser.add_argument('--checkpoint', type=str, help="checkpoint of autoencoders")
parser.add_argument('--style', type=str, default='', help="style image path")
parser.add_argument('--a2b', type=int, default=1, help="1 for a2b and others for b2a")
parser.add_argument('--seed', type=int, default=10, help="random seed")
parser.add_argument('--num_style',type=int, default=10, help="number of styles to sample")
parser.add_argument('--synchronized', action='store_true', help="whether use synchronized style code or not")
parser.add_argument('--output_only', action='store_true', help="whether use synchronized style code or not")
parser.add_argument('--output_path', type=str, default='.', help="path for logs, checkpoints, and VGG model weight")
parser.add_argument('--trainer', type=str, default='MUNIT', help="MUNIT|UNIT")
opts = parser.parse_args()
torch.manual_seed(opts.seed)
torch.cuda.manual_seed(opts.seed)
if not os.path.exists(opts.output_folder):
os.makedirs(opts.output_folder)
# Load experiment setting
config = get_config(opts.config)
opts.num_style = 1 if opts.style != '' else opts.num_style
# Setup model and data loader
config['vgg_model_path'] = opts.output_path
if opts.trainer == 'MUNIT':
style_dim = config['gen']['style_dim']
trainer = MUNIT_Trainer(config)
elif opts.trainer == 'UNIT':
trainer = UNIT_Trainer(config)
else:
sys.exit("Only support MUNIT|UNIT")
try:
state_dict = torch.load(opts.checkpoint)
trainer.gen_a.load_state_dict(state_dict['a'])
trainer.gen_b.load_state_dict(state_dict['b'])
except:
state_dict = pytorch03_to_pytorch04(torch.load(opts.checkpoint), opts.trainer)
trainer.gen_a.load_state_dict(state_dict['a'])
trainer.gen_b.load_state_dict(state_dict['b'])
trainer.cuda()
trainer.eval()
encode = trainer.gen_a.encode if opts.a2b else trainer.gen_b.encode # encode function
style_encode = trainer.gen_b.encode if opts.a2b else trainer.gen_a.encode # encode function
decode = trainer.gen_b.decode if opts.a2b else trainer.gen_a.decode # decode function
if 'new_size' in config:
new_size = config['new_size']
else:
if opts.a2b==1:
new_size = config['new_size_a']
else:
new_size = config['new_size_b']
with torch.no_grad():
transform = transforms.Compose([transforms.Resize(new_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
image = Variable(transform(Image.open(opts.input).convert('RGB')).unsqueeze(0).cuda())
style_image = Variable(transform(Image.open(opts.style).convert('RGB')).unsqueeze(0).cuda()) if opts.style != '' else None
# Start testing
content, _ = encode(image)
if opts.trainer == 'MUNIT':
style_rand = Variable(torch.randn(opts.num_style, style_dim, 1, 1).cuda())
if opts.style != '':
_, style = style_encode(style_image)
else:
style = style_rand
for j in range(opts.num_style):
s = style[j].unsqueeze(0)
outputs = decode(content, s)
outputs = (outputs + 1) / 2.
path = os.path.join(opts.output_folder, 'output{:03d}.jpg'.format(j))
vutils.save_image(outputs.data, path, padding=0, normalize=True)
elif opts.trainer == 'UNIT':
outputs = decode(content)
outputs = (outputs + 1) / 2.
path = os.path.join(opts.output_folder, 'output.jpg')
vutils.save_image(outputs.data, path, padding=0, normalize=True)
else:
pass
if not opts.output_only:
# also save input images
vutils.save_image(image.data, os.path.join(opts.output_folder, 'input.jpg'), padding=0, normalize=True)