-
Notifications
You must be signed in to change notification settings - Fork 3
/
RAG.py
137 lines (127 loc) · 4.04 KB
/
RAG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from Settings import settings
from llama_index.core import (
VectorStoreIndex,
StorageContext,
load_index_from_storage,
SimpleDirectoryReader,
Settings,
get_response_synthesizer,
)
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.llms.ollama import Ollama
from llama_index.readers.web import (
MainContentExtractorReader,
TrafilaturaWebReader,
BeautifulSoupWebReader,
)
from llama_index.core.postprocessor import SimilarityPostprocessor
from Utils import displayError, displayInfo
from time import time
import os
class RAG:
def __init__(self):
Settings.embed_model = OllamaEmbedding(
base_url=settings.ollama_base_url, model_name="nomic-embed-text"
) # nomic-embed-text, mxbai-embed-large, snowflake-arctic-embed
self.index = None
def load_index(self, folder):
try:
storage_context = StorageContext.from_defaults(persist_dir=folder)
self.index = load_index_from_storage(storage_context)
except Exception as e:
displayError(e)
def save_index(self, folder):
try:
self.index.storage_context.persist(persist_dir=folder)
except Exception as e:
displayError(e)
def build_index(self, documents, setStatus):
nodes = Settings.node_parser(documents)
node_texts = [n.get_content(metadata_mode="embed") for n in nodes]
embeddings = []
for i, text in enumerate(node_texts):
setStatus(f"Creating embeddings for {i}/{len(node_texts)}")
embeddings.append(Settings.embed_model.get_text_embedding(text))
for node, embedding in zip(nodes, embeddings):
node.embedding = embedding
return VectorStoreIndex(nodes=nodes)
def loadUrl(self, url, setStatus):
try:
start = time()
try:
documents = MainContentExtractorReader().load_data([url])
if len(documents) == 0 or documents[0].text.strip() == "":
raise (Exception("nothing found."))
except:
try:
documents = TrafilaturaWebReader().load_data([url])
if len(documents) == 0 or documents[0].text.strip() == "":
raise (Exception("nothing found."))
except:
documents = BeautifulSoupWebReader().load_data([url])
if len(documents) == 0 or documents[0].text.strip() == "":
raise (Exception("nothing found."))
# self.index = VectorStoreIndex.from_documents(documents) # , show_progress=True
self.index = self.build_index(documents, setStatus)
message = (
f"Indexed URL into {len(documents)} chunks in {time()-start:0.2f} seconds."
)
displayInfo("Index", message)
setStatus(message)
except Exception as e:
displayError(e)
setStatus("Failed to index.")
def loadFolder(self, path, setStatus):
required_exts = [
".hwp",
".pdf",
".docx",
".pptx",
".ppt",
".pptm",
".csv",
".epub",
".md",
".mbox",
]
try:
setStatus("Loading files.")
start = time()
if isinstance(path, str):
documents = SimpleDirectoryReader(
path, recursive=True, required_exts=required_exts
).load_data()
else:
documents = SimpleDirectoryReader(input_files=path).load_data()
# self.index = VectorStoreIndex.from_documents(documents) # , show_progress=True
self.index = self.build_index(documents, setStatus)
message = (
f"Indexed folder into {len(documents)} chunks in {time()-start:0.2f} seconds."
)
displayInfo("Index", message)
setStatus(message)
except Exception as e:
displayError(e)
setStatus("Failed to index.")
def ask(self, question):
node_postprocessors = [
SimilarityPostprocessor(similarity_cutoff=settings.similarity_cutoff)
]
query_engine = self.index.as_query_engine(
similarity_top_k=settings.similarity_top_k,
node_postprocessors=node_postprocessors,
response_mode="no_text",
)
response = query_engine.query(question)
if response.source_nodes:
query_engine = self.index.as_query_engine(
similarity_top_k=settings.similarity_top_k,
node_postprocessors=node_postprocessors,
response_mode=settings.response_mode,
streaming=True,
)
self.response = query_engine.query(question)
return self.response.response_gen
raise Exception(
"No texts found for the question using the current rag settings"
)