forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ggml-metal.metal
6246 lines (5301 loc) · 223 KB
/
ggml-metal.metal
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#define GGML_COMMON_DECL_METAL
#define GGML_COMMON_IMPL_METAL
#include "ggml-common.h"
#include <metal_stdlib>
using namespace metal;
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define MIN(x, y) ((x) < (y) ? (x) : (y))
#define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; }
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
enum ggml_sort_order {
GGML_SORT_ORDER_ASC,
GGML_SORT_ORDER_DESC,
};
// general-purpose kernel for addition, multiplication and division of two tensors
// pros: works for non-contiguous tensors, supports broadcast across all dims
// cons: not very efficient
kernel void kernel_add(
device const char * src0,
device const char * src1,
device char * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
constant int64_t & offs,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig.z;
const int64_t i02 = tgpig.y;
const int64_t i01 = tgpig.x;
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs;
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs;
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
const int i10 = i0 % ne10;
*((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) + *((device float *)(src1_ptr + i10*nb10));
}
}
kernel void kernel_mul(
device const char * src0,
device const char * src1,
device char * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig.z;
const int64_t i02 = tgpig.y;
const int64_t i01 = tgpig.x;
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
const int i10 = i0 % ne10;
*((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) * *((device float *)(src1_ptr + i10*nb10));
}
}
kernel void kernel_div(
device const char * src0,
device const char * src1,
device char * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig.z;
const int64_t i02 = tgpig.y;
const int64_t i01 = tgpig.x;
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
const int i10 = i0 % ne10;
*((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) / *((device float *)(src1_ptr + i10*nb10));
}
}
// assumption: src1 is a row
// broadcast src1 into src0
kernel void kernel_add_row(
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
constant uint64_t & nb [[buffer(28)]],
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] + src1[tpig % nb];
}
kernel void kernel_mul_row(
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
constant uint64_t & nb [[buffer(28)]],
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * src1[tpig % nb];
}
kernel void kernel_div_row(
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
constant uint64_t & nb [[buffer(28)]],
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] / src1[tpig % nb];
}
kernel void kernel_scale(
device const float * src0,
device float * dst,
constant float & scale,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * scale;
}
kernel void kernel_scale_4(
device const float4 * src0,
device float4 * dst,
constant float & scale,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * scale;
}
kernel void kernel_clamp(
device const float * src0,
device float * dst,
constant float & min,
constant float & max,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] < min ? min : (src0[tpig] > max ? max : src0[tpig]);
}
kernel void kernel_relu(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = max(0.0f, src0[tpig]);
}
kernel void kernel_tanh(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = precise::tanh(x);
}
constant float GELU_COEF_A = 0.044715f;
constant float GELU_QUICK_COEF = -1.702f;
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
kernel void kernel_gelu(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
kernel void kernel_gelu_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
device const float4 & x = src0[tpig];
// BEWARE !!!
// Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
// This was observed with Falcon 7B and 40B models
//
dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
kernel void kernel_gelu_quick(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
}
kernel void kernel_gelu_quick_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
device const float4 & x = src0[tpig];
dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
}
kernel void kernel_silu(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = x / (1.0f + exp(-x));
}
kernel void kernel_silu_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
device const float4 & x = src0[tpig];
dst[tpig] = x / (1.0f + exp(-x));
}
kernel void kernel_sqr(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * src0[tpig];
}
kernel void kernel_sum_rows(
device const float * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tpig[[thread_position_in_grid]]) {
int64_t i3 = tpig.z;
int64_t i2 = tpig.y;
int64_t i1 = tpig.x;
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
return;
}
device const float * src_row = (device const float *) ((device const char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
device float * dst_row = (device float *) ((device char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
float row_sum = 0;
for (int64_t i0 = 0; i0 < ne00; i0++) {
row_sum += src_row[i0];
}
dst_row[0] = row_sum;
}
kernel void kernel_soft_max(
device const float * src0,
device const float * src1,
device const float * src2,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant float & scale,
constant float & max_bias,
constant float & m0,
constant float & m1,
constant uint32_t & n_head_log2,
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
const int64_t i03 = (tgpig) / (ne02*ne01);
const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr;
device const float * ppos = src2 != src0 ? src2 : nullptr;
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
float slope = 0.0f;
// ALiBi
if (max_bias > 0.0f) {
const int64_t h = i02;
const float base = h < n_head_log2 ? m0 : m1;
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
slope = pow(base, exp);
}
// parallel max
float lmax = -INFINITY;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f));
}
// find the max value in the block
float max_val = simd_max(lmax);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = -INFINITY;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = max_val;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max_val = buf[tiisg];
max_val = simd_max(max_val);
}
// parallel sum
float lsum = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)) - max_val);
lsum += exp_psrc0;
pdst[i00] = exp_psrc0;
}
// This barrier fixes a failing test
// ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
threadgroup_barrier(mem_flags::mem_none);
float sum = simd_sum(lsum);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = sum;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sum = buf[tiisg];
sum = simd_sum(sum);
}
const float inv_sum = 1.0f/sum;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
pdst[i00] *= inv_sum;
}
}
kernel void kernel_soft_max_4(
device const float * src0,
device const float * src1,
device const float * src2,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant float & scale,
constant float & max_bias,
constant float & m0,
constant float & m1,
constant uint32_t & n_head_log2,
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
const int64_t i03 = (tgpig) / (ne02*ne01);
const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr;
device const float4 * ppos = src2 != src0 ? (device const float4 *)(src2) : nullptr;
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
float slope = 0.0f;
if (max_bias > 0.0f) {
const int64_t h = i02;
const float base = h < n_head_log2 ? m0 : m1;
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
slope = pow(base, exp);
}
// parallel max
float4 lmax4 = -INFINITY;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f));
}
const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
float max_val = simd_max(lmax);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = -INFINITY;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = max_val;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max_val = buf[tiisg];
max_val = simd_max(max_val);
}
// parallel sum
float4 lsum4 = 0.0f;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)) - max_val);
lsum4 += exp_psrc4;
pdst4[i00] = exp_psrc4;
}
const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
// This barrier fixes a failing test
// ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
threadgroup_barrier(mem_flags::mem_none);
float sum = simd_sum(lsum);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = sum;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sum = buf[tiisg];
sum = simd_sum(sum);
}
const float inv_sum = 1.0f/sum;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
pdst4[i00] *= inv_sum;
}
}
kernel void kernel_diag_mask_inf(
device const float * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int & n_past,
uint3 tpig[[thread_position_in_grid]]) {
const int64_t i02 = tpig[2];
const int64_t i01 = tpig[1];
const int64_t i00 = tpig[0];
if (i00 > n_past + i01) {
dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
} else {
dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
}
}
kernel void kernel_diag_mask_inf_8(
device const float4 * src0,
device float4 * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int & n_past,
uint3 tpig[[thread_position_in_grid]]) {
const int64_t i = 2*tpig[0];
dst[i+0] = src0[i+0];
dst[i+1] = src0[i+1];
int64_t i4 = 4*i;
const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
const int64_t i01 = i4/(ne00); i4 -= i01*ne00;
const int64_t i00 = i4;
for (int k = 3; k >= 0; --k) {
if (i00 + 4 + k <= n_past + i01) {
break;
}
dst[i+1][k] = -INFINITY;
if (i00 + k > n_past + i01) {
dst[i][k] = -INFINITY;
}
}
}
kernel void kernel_norm(
device const void * src0,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant float & eps,
threadgroup float * sum [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
// MEAN
// parallel sum
sum[tpitg] = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
sum[tpitg] += x[i00];
}
// reduce
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg/2; i > 0; i /= 2) {
if (tpitg < i) {
sum[tpitg] += sum[tpitg + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
const float mean = sum[0] / ne00;
// recenter and VARIANCE
threadgroup_barrier(mem_flags::mem_threadgroup);
device float * y = dst + tgpig*ne00;
sum[tpitg] = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
y[i00] = x[i00] - mean;
sum[tpitg] += y[i00] * y[i00];
}
// reduce
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg/2; i > 0; i /= 2) {
if (tpitg < i) {
sum[tpitg] += sum[tpitg + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
const float variance = sum[0] / ne00;
const float scale = 1.0f/sqrt(variance + eps);
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
y[i00] = y[i00] * scale;
}
}
kernel void kernel_rms_norm(
device const void * src0,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant float & eps,
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
float4 sumf = 0;
float all_sum = 0;
// parallel sum
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
sumf += x[i00] * x[i00];
}
all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
all_sum = simd_sum(all_sum);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = all_sum;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
all_sum = buf[tiisg];
all_sum = simd_sum(all_sum);
}
const float mean = all_sum/ne00;
const float scale = 1.0f/sqrt(mean + eps);
device float4 * y = (device float4 *) (dst + tgpig*ne00);
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
y[i00] = x[i00] * scale;
}
}
kernel void kernel_group_norm(
device const float * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int32_t & n_groups,
constant float & eps,
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
const int64_t ne = ne00*ne01*ne02;
const int64_t gs = ne00*ne01*((ne02 + n_groups - 1) / n_groups);
int start = tgpig * gs;
int end = start + gs;
start += tpitg;
if (end >= ne) {
end = ne;
}
float tmp = 0.0f; // partial sum for thread in warp
for (int j = start; j < end; j += ntg) {
tmp += src0[j];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
tmp = simd_sum(tmp);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = tmp;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
tmp = buf[tiisg];
tmp = simd_sum(tmp);
}
const float mean = tmp / gs;
tmp = 0.0f;
for (int j = start; j < end; j += ntg) {
float xi = src0[j] - mean;
dst[j] = xi;
tmp += xi * xi;
}
tmp = simd_sum(tmp);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = tmp;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
tmp = buf[tiisg];
tmp = simd_sum(tmp);
}
const float variance = tmp / gs;
const float scale = 1.0f/sqrt(variance + eps);
for (int j = start; j < end; j += ntg) {
dst[j] *= scale;
}
}
// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q4 quants begin (0 or QK4_0/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float2 acc = 0.f;
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
+ yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
+ yl[i + 9] * (qs[i / 2] & 0xF000);
}
return d * (sumy * -8.f + acc[0] + acc[1]);
}
// function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q4 quants begin (0 or QK4_0/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float m = qb_curr->m;
float2 acc = 0.f;
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
+ yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
+ yl[i + 9] * (qs[i / 2] & 0xF000);
}
return d * (acc[0] + acc[1]) + sumy * m;
}
// function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q5 quants begin (0 or QK5_0/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float2 acc = 0.f;
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2);
const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
+ yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
+ yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
}
return d * (sumy * -16.f + acc[0] + acc[1]);
}
// function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q5 quants begin (0 or QK5_1/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float m = qb_curr->m;
float2 acc = 0.f;
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2);
const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
+ yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
+ yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
}
return d * (acc[0] + acc[1]) + sumy * m;
}
// putting them in the kernel cause a significant performance penalty
#define N_DST 4 // each SIMD group works on 4 rows
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
//Note: This is a template, but strictly speaking it only applies to
// quantizations where the block size is 32. It also does not
// guard against the number of rows not being divisible by
// N_DST, so this is another explicit assumption of the implementation.
template<typename block_q_type, int nr, int nsg, int nw>
void mul_vec_q_n_f32_impl(
device const void * src0,
device const float * src1,
device float * dst,
int64_t ne00,
int64_t ne01,
int64_t ne02,
int64_t ne10,
int64_t ne12,
int64_t ne0,
int64_t ne1,
uint r2,
uint r3,
threadgroup int8_t * shared_values,
uint3 tgpig, uint tiisg, uint sgitg) {
const int nb = ne00/QK4_0;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * nsg + sgitg) * nr;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
device const block_q_type * x = (device const block_q_type *) src0 + offset0;
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
float yl[16]; // src1 vector cache
float sumf[nr] = {0.f};
const int ix = (tiisg/2);
const int il = (tiisg%2)*8;
device const float * yb = y + ix * QK4_0 + il;
// each thread in a SIMD group deals with half a block.
for (int ib = ix; ib < nb; ib += nw/2) {
float sumy = 0;
for (int i = 0; i < 8; i += 2) {
sumy += yb[i] + yb[i+1];
yl[i+0] = yb[i+ 0];
yl[i+1] = yb[i+ 1]/256.f;
sumy += yb[i+16] + yb[i+17];
yl[i+8] = yb[i+16]/16.f;
yl[i+9] = yb[i+17]/4096.f;
}
for (int row = 0; row < nr; row++) {
sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il);
}
yb += QK4_0 * 16;
}
for (int row = 0; row < nr; ++row) {
const float tot = simd_sum(sumf[row]);
if (tiisg == 0 && first_row + row < ne01) {
dst[im*ne0*ne1 + r1*ne0 + first_row + row] = tot;
}
}
}
kernel void kernel_mul_mv_q4_0_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
}
kernel void kernel_mul_mv_q4_1_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,