forked from macs-lab/macs-arb-adaptive-regulation-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transient_duration_step_changes.m
executable file
·192 lines (164 loc) · 5.46 KB
/
transient_duration_step_changes.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
function TD = transient_duration_step_changes(y,Fs,ED,Td,DD,TL)
%--------------------------------------------------------------------------
% Benchmark on Adaptive Regulation:
%
% Rejection of unknown/time-varying multiple narrow band disturbances
%
%--------------------------------------------------------------------------
%
% function TD = transient_duration_step_changes(y,Fs,ED,Td,DD,TL)
%
% This function computes the transient duration for narrow band disturbance
% rejection (Application to a Benchmark problem) for frequency step
% changes protocol.
%
% The function computes the transient duration for each step change in
% frequency during a sequence of step changes. The user has to specify
% what step change in the sequence has to be analysed (first, second, etc)
% by specifying the varaible nD.
%
% The transient duration is defined as the time necessary to the output
% to reach the value +/-2.17sigma , where sigma is the standard deviation
% for the residual output (once the algo has converged) computed during
% the 3 last seconds of the experiment.
%
% sigma (x) = sqrt ( var(x))
% where "x" is the vector of data corresponding to the 3 last seconds of
% the experiment.
%
% In addition the output after has reached for
% the first time 2.17 sigma should remain within +/- 4 sigma.
% The test has been developped assuming that the residual output is a
% gaussian process.(ie 97% of values are between +/-2.17 sigma, and
% 99.99% of values are between +/- 4 sigma).
%
% However it is tolerated that 0.1% of the measurements be outside +/- 4
% sigma. The percentage is denoted Dp. (to take in account that the
% residual error is not a pure gaussian variable).
%
%
% TD = transient_duration_step_changes(y,Fs,ED,Td,T1,DD,TL)
%
% TD : transient duration (in seconds)
%
% y : is vector of data
%
% Fs : is the sampling frequency ( Fs = 800 Hz by default)
%
% Ed : is the exepriment duration ( ED = 32 sec by default)
% The experiment duration should be at least equal to 10 sec.
%
% Td : Start disturbance time of the first disturbance (Td = 5 sec by default)
%
% nD : Considered disturbance
% nD can be equal to 1 for the first step change in frequencies, 2 for the
% second ... and 5 for the fifth and last one.
%
% DD : Duration of the application of the disturbance (DD = 3 sec by default)
%
% TL : Last disturbance duration (TL = 15 sec by default)
%
% threshold 1 = 2.17 * standard deviation (after convergence)
% threshold 2 = 4 * standard deviation (after convergence)
%
% Important Remark :
% If you use the default values : Fs=800; ED=32; Td=5; DD=3; TL=15; you can
% run the function with the syntax :
%
% TD = transient_duration_step_changes(y)
%
% Written by M. Alma and I.D. Landau (GIPSA-LAB)
% Version 1, September 16, 2010
if nargin<2, Fs = 800; ED = 32; Td = 5;nD =1; DD = 3; TL = 15;end
if nargin<3, ED = 32; Td = 5;nD =1; DD = 3; TL = 15;end
if nargin<4, Td = 5;nD =1; DD = 3; TL = 15;end
if nargin<5, nD = 1; DD = 3; TL = 15;end
if nargin<6, DD = 3; TL = 15;end
if nargin<7, TL = 15; end
fprintf (...
'Choose the considered disturbance (1- First 2- Second 3- Third 4- Fourth 5- Fifth )')
fprintf ('\n')
nD=input('nD=')
if Td>=ED, error('Disturbance must be injected before the end of the experiment'),end
T1 = Td + (nD-1)*DD;
y2=y(T1*Fs+1:(T1+DD)*Fs);
y2=y2-mean(y2);
y=y-mean(y);
perc = 99.9;
yres = y((ED-3)*Fs+1:ED*Fs);
sigma = sqrt(var(yres))
threshold1 = 2.17*sigma;
threshold2 = 4*sigma;
l=0;
for n = 1:length(y2)
if abs(y(n)) <= threshold1
g=0;
for k = n:length(y2)
if abs(y2(k)) > threshold2
g= g+1;
end
end
if g<(length(y2)-n+1)*((100-perc)/100)
l=n;
break
end
end
end
g;
fprintf ('Percentage of points above +/- 4 sigma is :')
Dp = g/(length(y2)-n+1) *100
if l==0, error('Algorithm does not converge'),end
fprintf ('The transient maximum value is:')
maximum = max(abs(y2))
fprintf ('Transient duration is :')
TD=(l+1)/Fs;
t= 0:1/800:DD-1/800;
threshold_vec1=threshold1*ones(1,length(y2));
threshold_vec2=threshold2*ones(1,length(y2));
vec_ver = -max(abs(y)):0.001:max(abs(y2));
TD_ver = (l+1)/Fs*ones(1,length(vec_ver));
figure
plot(t,y2);
hold on
plot(t,threshold_vec1,'r','LineWidth',2)
hold on
plot(t,-threshold_vec1,'r','LineWidth',2)
hold on
plot(t,threshold_vec2,'k','LineWidth',2)
hold on
plot(t,-threshold_vec2,'k','LineWidth',2)
grid on
XLABEL('Time [sec]')
YLABEL('Residual force [V]')
title('Adaptive disturbance rejection')
figure
%hold on
plot(t,y2);
hold on
plot(t,threshold_vec1,'r','LineWidth',2)
hold on
plot(t,-threshold_vec1,'r','LineWidth',2)
hold on
plot(t,threshold_vec2,'k','LineWidth',2)
hold on
plot(t,-threshold_vec2,'k','LineWidth',2)
hold on
plot(TD_ver,vec_ver,'-.k','LineWidth',2)
hold on
text(TD,max(abs(y2))*3/4,...
['Transient duration = ',num2str(TD)],...
'HorizontalAlignment','center',...
'BackgroundColor',[.7 .9 .7],...
'FontSize',16);
hold on
text(TD,-max(abs(y2))*3/4,...
['Maximum transient value = ',num2str(maximum)],...
'HorizontalAlignment','center',...
'BackgroundColor',[.7 .9 .7],...
'FontSize',16);
grid on
XLABEL('Time [sec]')
YLABEL('Residual force [V]')
title('Adaptive disturbance rejection')
xlim([0 2*TD]);
ylim([-max(abs(y2)) max(abs(y2))]);