Skip to content
forked from panjf2000/gnet

🚀 gnet is a high-performance, lightweight, non-blocking, event-driven networking framework written in pure Go./ gnet 是一个高性能、轻量级、非阻塞的事件驱动 Go 网络框架。

License

Notifications You must be signed in to change notification settings

charlesgreat/gnet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

gnet

English | 🇨🇳中文

📖 Introduction

gnet is an event-driven networking framework that is fast and lightweight. It makes direct epoll and kqueue syscalls rather than using the standard Go net package and works in a similar manner as netty and libuv, which makes gnet achieve a much higher performance than Go net.

gnet is not designed to displace the standard Go net package, but to create a networking server framework for Go that performs on par with Redis and Haproxy for networking packets handling.

gnet sells itself as a high-performance, lightweight, non-blocking, event-driven networking framework written in pure Go which works on transport layer with TCP/UDP protocols and Unix Domain Socket , so it allows developers to implement their own protocols(HTTP, RPC, WebSocket, Redis, etc.) of application layer upon gnet for building diversified network applications, for instance, you get an HTTP Server or Web Framework if you implement HTTP protocol upon gnet while you have a Redis Server done with the implementation of Redis protocol upon gnet and so on.

gnet derives from the project: evio while having a much higher performance and more features.

🚀 Features

  • High-performance event-loop under networking model of multiple threads/goroutines
  • Built-in goroutine pool powered by the library ants
  • Built-in memory pool with bytes powered by the library bytebufferpool
  • Lock-free during the entire runtime
  • Concise and easy-to-use APIs
  • Efficient, reusable and scalable memory buffer: Ring-Buffer
  • Supporting multiple protocols/IPC mechanism: TCP, UDP and Unix Domain Socket
  • Supporting multiple load-balancing algorithms: Round-Robin, Source-Addr-Hash and Least-Connections
  • Supporting two event-driven mechanisms: epoll on Linux and kqueue on FreeBSD/DragonFly/Darwin
  • Supporting asynchronous write operation
  • Flexible ticker event
  • SO_REUSEPORT socket option
  • Built-in multiple codecs to encode/decode network frames into/from TCP stream: LineBasedFrameCodec, DelimiterBasedFrameCodec, FixedLengthFrameCodec and LengthFieldBasedFrameCodec, referencing netty codec, also supporting customized codecs
  • Supporting Windows platform with event-driven mechanism of IOCP Go stdlib: net
  • Implementation of gnet Client

📊 Performance

Benchmarks on TechEmpower

# Hardware Environment
CPU: 28 HT Cores Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz
Mem: 32GB RAM
OS : Ubuntu 18.04.3 4.15.0-88-generic #88-Ubuntu
Net: Switched 10-gigabit ethernet
Go : go1.14.x linux/amd64

All language

This is the top 50 on the framework ranking of all programming languages consists of a total of 422 frameworks from all over the world where gnet is the runner-up.

Golang

This is the full framework ranking of Go and gnet tops all the other frameworks, which makes gnet the fastest networking framework in Go.

To see the full ranking list, visit TechEmpower Plaintext Benchmark.

Contrasts to the similar networking libraries

On Linux (epoll)

Test Environment

# Machine information
        OS : Ubuntu 20.04/x86_64
       CPU : 8 CPU cores, AMD EPYC 7K62 48-Core Processor
    Memory : 16.0 GiB

# Go version and settings
Go Version : go1.16.5 linux/amd64
GOMAXPROCS : 8

# Benchmark parameters
TCP connections : 500/1000/5000/10000
Packet size     : 512/1024/2048/4096/8192/16384/32768/65536 bytes
Test duration   : 15s

On MacOS (kqueue)

Test Environment

# Machine information
        OS : MacOS Big Sur/x86_64
       CPU : 6 CPU cores, Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
    Memory : 16.0 GiB

# Go version and settings
Go Version : go1.16.5 darwin/amd64
GOMAXPROCS : 12

# Benchmark parameters
TCP connections : 300/400/500/600/700
Packet size     : 512/1024/2048/4096/8192 bytes
Test duration   : 15s

🏛 Website

Please visit the official website for more details about architecture, usage and other information of gnet.

⚠️ License

Source files of gnet are distributed under the MIT license found in the LICENSE file.

👏 Contributors

Please read the Contributing Guidelines before opening a PR and thank you to all the developers who already made contributions to gnet!

⚓ Relevant Articles

🎡 User cases

The following companies/organizations use gnet as the underlying network service in production.

          

If you have gnet integrated into projects, feel free to open a pull request refreshing this list of user cases.

💰 Backers

Support us with a monthly donation and help us continue our activities.

💎 Sponsors

Become a bronze sponsor with a monthly donation of $10 and get your logo on our README on Github.

☕️ Buy me a coffee

Please be sure to leave your name, Github account or other social media accounts when you donate by the following means so that I can add it to the list of donors as a token of my appreciation.

        

💴 Donors

Patrick Othmer Jimmy ChenZhen Mai Yang 王开帅 Unger Alejandro Swaggadan

💵 Paid Support

If you need a tailored version of gnet and want the author to help develop it, or bug fix/fast resolution/consultation which takes a lot of effort, you can request paid support here.

🔑 JetBrains OS licenses

gnet had been being developed with GoLand IDE under the free JetBrains Open Source license(s) granted by JetBrains s.r.o., hence I would like to express my thanks here.

🔋 Sponsorship

This project is supported by:

About

🚀 gnet is a high-performance, lightweight, non-blocking, event-driven networking framework written in pure Go./ gnet 是一个高性能、轻量级、非阻塞的事件驱动 Go 网络框架。

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Go 100.0%