Skip to content

Latest commit

 

History

History
25 lines (17 loc) · 920 Bytes

README.md

File metadata and controls

25 lines (17 loc) · 920 Bytes

Parametric generation of conditional geological realizations using generative neural networks (arXiv)

Requires PyTorch 0.4+

Run with python main.py [--options]

  • Z

  • X

  • O

You can download our pre-trained unconditional generator netG.pth here (12MB), which has been trained using Wasserstein GAN (https://arxiv.org/abs/1701.07875)

  • main.py main code
  • models.py neural network architectures
  • utils.py helper functions
  • dat/cond*.dat conditioning test cases