-
Notifications
You must be signed in to change notification settings - Fork 4
/
losses.py
61 lines (47 loc) · 1.82 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from __future__ import print_function, division
import torch.nn.functional as F
def dice_loss(prediction, target):
"""Calculating the dice loss
Args:
prediction = predicted image
target = Targeted image
Output:
dice_loss"""
smooth = 1.0
i_flat = prediction.view(-1)
t_flat = target.view(-1)
intersection = (i_flat * t_flat).sum()
return 1 - ((2. * intersection + smooth) / (i_flat.sum() + t_flat.sum() + smooth))
def calc_loss(prediction, target, bce_weight=0.0):# 0.2
"""Calculating the loss and metrics
Args:
prediction = predicted image
target = Targeted image
metrics = Metrics printed
bce_weight = 0.5 (default)
Output:
loss : dice loss of the epoch """
bce = F.binary_cross_entropy_with_logits(prediction, target)
prediction = F.sigmoid(prediction)
dice = dice_loss(prediction, target)
loss = bce * bce_weight + dice * (1 - bce_weight)
return loss
def threshold_predictions_v(predictions, thr=150):
thresholded_preds = predictions[:]
# hist = cv2.calcHist([predictions], [0], None, [2], [0, 2])
# plt.plot(hist)
# plt.xlim([0, 2])
# plt.show()
low_values_indices = thresholded_preds < thr
thresholded_preds[low_values_indices] = 0
low_values_indices = thresholded_preds >= thr
thresholded_preds[low_values_indices] = 255
return thresholded_preds
def threshold_predictions_p(predictions, thr=0.01):
thresholded_preds = predictions[:]
#hist = cv2.calcHist([predictions], [0], None, [256], [0, 256])
low_values_indices = thresholded_preds < thr
thresholded_preds[low_values_indices] = 0
low_values_indices = thresholded_preds >= thr
thresholded_preds[low_values_indices] = 1
return thresholded_preds