-
Notifications
You must be signed in to change notification settings - Fork 55
/
utils.py
executable file
·416 lines (374 loc) · 13.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import cv2, sys, os, rawpy
from PIL import Image
import numpy as np
import scipy.stats as stats
######### Local Vars
FOCAL_CODE = 37386
ORIEN_CODE = 274
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG', 'tiff',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
RAW_EXTENSIONS = [
'.ARW', '.arw', '.CR2', 'cr2',
]
lower, upper = 0., 1.
mu, sigma = 0.5, 0.2
# generate random numbers for random crop
rand_gen = stats.truncnorm(
(lower - mu) / sigma, (upper - mu) / sigma, loc=mu, scale=sigma)
######### Util functions
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def is_raw_file(filename):
return any(filename.endswith(extension) for extension in RAW_EXTENSIONS)
def read_wb_lv(device):
if device == "sony":
white_lv = 16383
black_lv = 512
elif device == "iphone":
white_lv = 4367
black_lv = 528
else:
print("Unknow device, please change or add your own.")
exit()
return white_lv, black_lv
# 35mm equivalent focal length
def readFocal_pil(image_path):
if 'ARW' in image_path:
image_path = image_path.replace('ARW','JPG')
try:
img = Image.open(image_path)
except:
return None
exif_data = img._getexif()
return exif_data[FOCAL_CODE][0]/exif_data[FOCAL_CODE][1]
### CHECK
def readOrien_pil(image_path):
img = Image.open(image_path)
exif_data = img._getexif()
return exif_data[ORIEN_CODE]
### CHECK
def read_tform(txtfile, key, model='ECC'):
corner = np.eye(4, dtype=np.float32)
if model in ['ECC', 'RIGID']:
tform = np.eye(2, 3, dtype=np.float32)
else:
tform = np.eye(3, 3, dtype=np.float32)
with open(txtfile) as f:
for l in f:
if "00001-"+key in l:
for i in range(tform.shape[0]):
nextline = next(f)
tform[i,:] = nextline.split()
if 'corner' in l:
nextline = next(f)
corner = nextline.split()
return tform, corner
### CHECK
def read_wb(txtfile, key):
wb = np.zeros((1,4))
with open(txtfile) as f:
for l in f:
if key in l:
for i in range(wb.shape[0]):
nextline = next(f)
try:
wb[i,:] = nextline.split()
except:
print("WB error XXXXXXX")
print(txtfile)
wb = wb.astype(np.float)
return wb
def read_paths(path, type='RAW'):
paths=[]
for dirname in path:
for root, _, fnames in sorted(os.walk(dirname)):
for fname in sorted(fnames):
if type == 'RAW':
if is_raw_file(fname):
paths.append(os.path.join(root, fname))
else:
if is_image_file(fname):
paths.append(os.path.join(root, fname))
return paths
### CHECK
def compute_wb(raw_path):
print("Computing WB for %s"%(raw_path))
bayer = rawpy.imread(raw_path)
rgb_nowb = bayer.postprocess(gamma=(1, 1),
no_auto_bright=True,
use_camera_wb=False,
output_bps=16)
rgb_wb = bayer.postprocess(gamma=(1, 1),
no_auto_bright=True,
use_camera_wb=True,
output_bps=16)
scale=[np.mean(rgb_wb[...,0])/np.mean(rgb_nowb[...,0]),
np.mean(rgb_wb[...,1])/np.mean(rgb_nowb[...,1]),
np.mean(rgb_wb[...,1])/np.mean(rgb_nowb[...,1]),
np.mean(rgb_wb[...,2])/np.mean(rgb_nowb[...,2])]
wb = np.zeros((1,4))
wb[0,0] = scale[0]
wb[0,1] = scale[1]
wb[0,2] = scale[2]
wb[0,3] = scale[3]
return wb
def make_mosaic(im, mosaic_type='bayer'):
H, W=im.shape[:2]
mosaic=np.zeros((H, W))
mosaic[0:H:2, 0:W:2] = im[0:H:2, 0:W:2, 0]
mosaic[0:H:2, 1:W:2] = im[0:H:2, 1:W:2, 1]
mosaic[1:H:2, 0:W:2] = im[1:H:2, 0:W:2, 1]
mosaic[1:H:2, 1:W:2] = im[1:H:2, 1:W:2, 2]
return mosaic
def add_noise(im):
sz = im.shape
noise_level = np.random.rand(1)
noise_level *= 0.0784
noise_level += 0.0000
noise = noise_level*np.random.randn(sz[0], sz[1])
im += noise
return im, noise_level
### CHECK
def get_bayer(path, black_lv, white_lv):
try:
raw = rawpy.imread(path)
except:
return None
bayer = raw.raw_image_visible.astype(np.float32)
bayer = (bayer - black_lv)/ (white_lv - black_lv) #subtract the black level
return bayer
def reshape_raw(bayer):
bayer = np.expand_dims(bayer,axis=2)
bayer_shape = bayer.shape
H = bayer_shape[0]
W = bayer_shape[1]
reshaped = np.concatenate((bayer[0:H:2,0:W:2,:],
bayer[0:H:2,1:W:2,:],
bayer[1:H:2,1:W:2,:],
bayer[1:H:2,0:W:2,:]), axis=2)
return reshaped
def reshape_back_raw(bayer):
H = bayer.shape[0]
W = bayer.shape[1]
newH = int(H*2)
newW = int(W*2)
bayer_back = np.zeros((newH, newW))
bayer_back[0:newH:2,0:newW:2] = bayer[...,0]
bayer_back[0:newH:2,1:newW:2] = bayer[...,1]
bayer_back[1:newH:2,1:newW:2] = bayer[...,2]
bayer_back[1:newH:2,0:newW:2] = bayer[...,3]
return bayer_back
def write_raw(source_raw, target_raw_path, device='sony'):
white_lv, black_lv = read_wb_lv(device)
target_raw = rawpy.imread(target_raw_path)
H, W = source_raw.shape[:2]
for indi,i in enumerate(range(H)):
for indj,j in enumerate(range(W)):
target_raw.raw_image_visible[indi, indj] = source_raw[i, j] * (white_lv - black_lv) + black_lv
rgb = target_raw.postprocess(no_auto_bright=True,
use_camera_wb=False,
output_bps=8)
return rgb
### CHECK
def crop_fov(image, ratio):
width, height = image.shape[:2]
new_width = width * ratio
new_height = height * ratio
left = np.ceil((width - new_width)/2.)
top = np.ceil((height - new_height)/2.)
right = np.floor((width + new_width)/2.)
bottom = np.floor((height + new_height)/2.)
# print("Cropping boundary: ", top, bottom, left, right)
cropped = image[int(left):int(right), int(top):int(bottom), ...]
return cropped
### CHECK
def crop_fov_free(image, ratio, crop_fracx=1./2, crop_fracy=1./2):
width, height = image.shape[:2]
new_width = width * ratio
new_height = height * ratio
left = np.ceil((width - new_width) * crop_fracx)
top = np.ceil((height - new_height) * crop_fracy)
# right = np.floor((width + new_width) * crop_frac)
# bottom = np.floor((height + new_height) * crop_frac)
# print("Cropping boundary: ", top, bottom, left, right)
cropped = image[int(left):int(left+new_width), int(top):int(top+new_height), ...]
return cropped
### CHECK
# image_set: a list of images
def bgr_gray(image_set, color='rgb'):
img_num = len(image_set)
image_gray_set = []
for i in range (img_num):
if color == 'rgb':
image_gray_i = cv2.cvtColor(image_set[i], cv2.COLOR_RGB2GRAY)
elif color == 'bgr':
image_gray_i = cv2.cvtColor(image_set[i], cv2.COLOR_BGR2GRAY)
image_gray_set.append(image_gray_i)
return image_gray_set
### CHECK
def image_float(image):
if image.max() < 2:
return image.astype(np.float32)
if image.dtype is np.dtype(np.uint16):
image = image.astype(np.float32) / (255*255)
elif image.dtype is np.dtype(np.uint8):
image = image.astype(np.float32) / 255
return image
### CHECK
def image_uint8(image):
if image.max() > 10:
return image
image = (image * 255).astype(np.uint8)
return image
### CHECK
# use PIL image resize
def resize_pil(image, ratio):
image = Image.fromarray(image)
image = image.resize((int(image.width*ratio),
int(image.height*ratio)),
Image.ANTIALIAS)
return np.array(image)
def clipped(image):
if image.max() <= 10:
return np.minimum(np.maximum(image,0.0),1.0)
else:
return np.minimum(np.maximum(image,0.0),255.0)
### CHECK
def apply_gamma(image, gamma=2.22,is_apply=True):
if not is_apply:
image[image < 0] = 0.
return image
if image.max() > 5:
image = image_float(image)
if image.min() < 0:
print("Negative values in images, zero out")
image[image < 0] = 0.
image_copy = image
image_copy = image_copy ** (1./gamma)
return image_copy
# Convert RGB image into YUV https://en.wikipedia.org/wiki/YUV
def rgb2yuv(rgb):
rgb2yuv_filter = tf.constant(
[[[[0.299, -0.169, 0.499],
[0.587, -0.331, -0.418],
[0.114, 0.499, -0.0813]]]])
rgb2yuv_bias = tf.constant([0., 0.5, 0.5])
temp = tf.nn.conv2d(rgb, rgb2yuv_filter, [1, 1, 1, 1], 'SAME')
temp = tf.nn.bias_add(temp, rgb2yuv_bias)
return temp
def get_scale_matrix(ratio):
scale = np.eye(3, 3, dtype=np.float32)
scale[0,0] = ratio
scale[1,1] = ratio
return scale
def concat_tform(tform_list):
tform_c = tform_list[0]
for tform in tform_list[1:]:
tform_c = np.matmul(tform, tform_c)
return tform_c
def warp_image(target_rgb, out_size, tform):
target_rgb_warp = cv2.warpAffine(target_rgb, tform, (out_size[0], out_size[1]),
flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP)
transformed_corner = get_transformed_corner(tform, out_size[0], out_size[1])
target_rgb_process = target_rgb_warp[transformed_corner['minw']:transformed_corner['maxw'],
transformed_corner['minh']:transformed_corner['maxh'],:]
return target_rgb_process, transformed_corner
# utils to prepare aligned rgb-raw paires
def crop_pair(
raw, image,
croph, cropw,
tol=32, raw_tol=4, ratio=2,
type='central',
fixx=0.5, fixy=0.5):
is_pad_h = False
is_pad_w = False
if type == 'central':
rand_p = rand_gen.rvs(2)
elif type == 'random':
rand_p = np.random.rand(2)
elif type == 'fixed':
rand_p = [fixx,fixy]
height_raw, width_raw = raw.shape[:2]
height_rgb, width_rgb = image.shape[:2]
if croph > height_raw * 2*ratio or cropw > width_raw * 2*ratio:
print("Image too small to have the specified crop sizes.")
return None, None
croph_rgb = croph + tol * 2
cropw_rgb = cropw + tol * 2
croph_raw = int(croph/(ratio*2)) + raw_tol*2 # add a small offset to deal with boudary case
cropw_raw = int(cropw/(ratio*2)) + raw_tol*2 # add a small offset to deal with boudary case
if croph_rgb > height_rgb:
sx_rgb = 0
sx_raw = int(tol/2.)
is_pad_h = True
pad_h1_rgb = int((croph_rgb-height_rgb)/2)
pad_h2_rgb = int(croph_rgb-height_rgb-pad_h1_rgb)
pad_h1_raw = int(np.ceil(pad_h1_rgb/(2*ratio)))
pad_h2_raw = int(np.ceil(pad_h2_rgb/(2*ratio)))
else:
sx_rgb = int((height_rgb - croph_rgb) * rand_p[0])
sx_raw = max(0, int((sx_rgb + tol)/(2*ratio)) - raw_tol) # add a small offset to deal with boudary case
if cropw_rgb > width_rgb:
sy_rgb = 0
sy_raw = int(tol/2.)
is_pad_w = True
pad_w1_rgb = int((cropw_rgb-width_rgb)/2)
pad_w2_rgb = int(cropw_rgb-width_rgb-pad_w1_rgb)
pad_w1_raw = int(np.ceil(pad_w1_rgb/(2*ratio)))
pad_w2_raw = int(np.ceil(pad_w2_rgb/(2*ratio)))
else:
sy_rgb = int((width_rgb - cropw_rgb) * rand_p[1])
sy_raw = max(0, int((sy_rgb + tol)/(2*ratio)) - raw_tol)
raw_cropped = raw
rgb_cropped = image
if is_pad_h:
print("Pad h with:", (pad_h1_rgb, pad_h2_rgb),(pad_h1_raw, pad_h2_raw))
rgb_cropped = np.pad(image, pad_width=((pad_h1_rgb, pad_h2_rgb),(0, 0),(0,0)),
mode='constant', constant_values=0)
raw_cropped = np.pad(raw, pad_width=((pad_h1_raw, pad_h2_raw),(0, 0),(0,0)),
mode='constant', constant_values=0)
if is_pad_w:
print("Pad w with:", (pad_w1_rgb, pad_w2_rgb),(pad_w1_raw, pad_w2_raw))
rgb_cropped = np.pad(image, pad_width=((0, 0),(pad_w1_rgb, pad_w2_rgb),(0,0)),
mode='constant', constant_values=0)
raw_cropped = np.pad(raw, pad_width=((0, 0),(pad_w1_raw, pad_w2_raw),(0,0)),
mode='constant', constant_values=0)
raw_cropped = raw_cropped[sx_raw:sx_raw+croph_raw, sy_raw:sy_raw+cropw_raw,...]
rgb_cropped = rgb_cropped[sx_rgb:sx_rgb+croph_rgb, sy_rgb:sy_rgb+cropw_rgb,...]
return raw_cropped, rgb_cropped
def concat_tform(tform_list):
tform_c = tform_list[0]
for tform in tform_list[1:]:
tform_c = np.matmul(tform, tform_c)
return tform_c
def post_process_rgb(target_rgb, out_size, tform):
target_rgb_warp = cv2.warpAffine(target_rgb, tform, (out_size[1], out_size[0]),
flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP)
transformed_corner = get_transformed_corner(tform, out_size[0], out_size[1])
target_rgb_process = target_rgb_warp[transformed_corner['minh']:transformed_corner['maxh'],
transformed_corner['minw']:transformed_corner['maxw'],:]
return target_rgb_process, transformed_corner
def get_transformed_corner(tform, h, w):
corner = np.array([[0,0,w,w],[0,h,0,h],[1,1,1,1]])
inv_tform = cv2.invertAffineTransform(tform)
corner_t = np.matmul(np.vstack([np.array(inv_tform),[0,0,1]]),corner)
min_w = np.max(corner_t[0,[0,1]])
min_w = int(np.max(np.ceil(min_w),0))
min_h = np.max(corner_t[1,[0,2]])
min_h = int(np.max(np.ceil(min_h),0))
max_w = np.min(corner_t[0,[2,3]])
max_w = int(np.floor(max_w))
max_h = np.min(corner_t[1,[1,3]])
max_h = int(np.floor(max_h))
tformed = {}
tformed['minw'] = max(0,min_w)
tformed['maxw'] = min(w,max_w)
tformed['minh'] = max(0,min_h)
tformed['maxh'] = min(h,max_h)
return tformed