-
Notifications
You must be signed in to change notification settings - Fork 0
/
process_vecs_CTGY_ko.py
81 lines (72 loc) · 2.95 KB
/
process_vecs_CTGY_ko.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import pickle
import sqlite3
from typing import Set
import unicodedata
import re
from tqdm import tqdm
import numpy as np
from numpy import array
def is_hangul(text) -> bool:
return bool(re.match(r'^[0-9\u3130-\u318F\uAC00-\uD7A3]+$', text))
def load_dic(path: str) -> Set[str]:
rtn = set()
with open(path, 'r', encoding='utf-8') as f:
for line in f.readlines():
word = line.strip()
word = unicodedata.normalize('NFC', word)
if is_hangul(word):
rtn.add(word)
return rtn
def blocks(files, size=65536):
while True:
b = files.read(size)
if not b: break
yield b
def count_lines(filepath):
with open(filepath, "r", encoding="utf-8", errors='ignore') as f:
return sum(bl.count("\n") for bl in tqdm(blocks(f), desc='Counting lines', mininterval=1))
if __name__ == '__main__':
connection = sqlite3.connect('../DataSet/CTGY_guesses_ko.db')
cursor = connection.cursor()
cursor.execute("""CREATE TABLE IF NOT EXISTS guesses (word text PRIMARY KEY, vec blob)""")
print("created table")
normal_words = load_dic('../DataSet/output_oneElement.txt')
print("# words in dictionary:", len(normal_words))
valid_nearest = []
valid_nearest_mat = None
eliminated = 0
checked_words = set()
total_lines = count_lines('../DataSet/cc.ko.300.vec') - 1
with open('../DataSet/cc.ko.300.vec', 'r', encoding='utf-8', errors='ignore') as w2v_file:
_ = w2v_file.readline()
t = tqdm(total=total_lines, desc='Processing vectors', mininterval=1)
for n, line in enumerate(w2v_file):
# careful! some data sets (e.g. dewiki100.txt) have non-breaking spaces, which get split
# others have trailing spaces (e.g. COW.token.wang2vec), meaning an empty string is included with split(' ')
words = line.rstrip().split(' ')
word = words[0]
word = unicodedata.normalize('NFC', word)
if not is_hangul(word) or word in checked_words:
eliminated += 1
else:
vec = array([float(w1) for w1 in words[1:]])
if word in normal_words:
valid_nearest.append(word)
if valid_nearest_mat is None:
valid_nearest_mat = [vec]
else:
valid_nearest_mat.append(vec)
cursor.execute("""INSERT INTO guesses values (?, ?)""", (word, pickle.dumps(vec)))
checked_words.add(word)
if n % 100000 == 0:
connection.commit()
t.update()
t.refresh()
connection.commit()
connection.close()
print("invalid:", eliminated)
valid_nearest_mat = np.array(valid_nearest_mat)
print("valid nearest shape:", valid_nearest_mat.shape)
with open('../DataSet/CTGY_nearest_ko.dat', 'wb') as f:
pickle.dump((valid_nearest, valid_nearest_mat), f)
print("done pickling matrix")