-
Notifications
You must be signed in to change notification settings - Fork 18
/
sbatch.py
933 lines (751 loc) · 25.4 KB
/
sbatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
import datetime
import itertools
import os
import re
import subprocess
import sys
from collections import defaultdict
from pathlib import Path
import numpy as np
import yaml
def flatten_conf(conf, to={}, parents=[]):
"""
Flattens a configuration dict: nested dictionaries are flattened
as key1.key2.key3 = value
conf.yaml:
```yaml
a: 1
b:
c: 2
d:
e: 3
g:
sample: sequential
from: [4, 5]
```
Is flattened to
{
"a": 1,
"b.c": 2,
"b.d.e": 3,
"b.g": {
"sample": "sequential",
"from": [4, 5]
}
}
Does not affect sampling dicts.
Args:
conf (dict): the configuration to flatten
new (dict, optional): the target flatenned dict. Defaults to {}.
parents (list, optional): a final value's list of parents. Defaults to [].
"""
for k, v in conf.items():
if isinstance(v, dict) and "sample" not in v:
flatten_conf(v, to, parents + [k])
else:
new_k = ".".join([str(p) for p in parents + [k]])
to[new_k] = v
def env_to_path(path):
"""Transorms an environment variable mention in a json
into its actual value. E.g. $HOME/clouds -> /home/vsch/clouds
Args:
path (str): path potentially containing the env variable
"""
path_elements = path.split("/")
new_path = []
for el in path_elements:
if "$" in el:
new_path.append(os.environ[el.replace("$", "")])
else:
new_path.append(el)
return "/".join(new_path)
class C:
HEADER = "\033[95m"
OKBLUE = "\033[94m"
OKGREEN = "\033[92m"
WARNING = "\033[93m"
FAIL = "\033[91m"
ENDC = "\033[0m"
BOLD = "\033[1m"
UNDERLINE = "\033[4m"
ITALIC = "\33[3m"
BEIGE = "\33[36m"
def escape_path(path):
p = str(path)
return p.replace(" ", "\ ").replace("(", "\(").replace(")", "\)") # noqa: W605
def warn(*args, **kwargs):
print("{}{}{}".format(C.WARNING, " ".join(args), C.ENDC), **kwargs)
def parse_jobID(command_output):
"""
get job id from successful sbatch command output like
`Submitted batch job 599583`
Args:
command_output (str): sbatch command's output
Returns:
int: the slurm job's ID
"""
command_output = command_output.strip()
if isinstance(command_output, str):
if "Submitted batch job" in command_output:
return int(command_output.split()[-1])
return -1
def now():
return str(datetime.datetime.now()).replace(" ", "_")
def cols():
try:
col = os.get_terminal_size().columns
except Exception:
col = 50
return col
def print_box(txt):
if not txt:
txt = "{}{}ERROR ⇪{}".format(C.BOLD, C.FAIL, C.ENDC)
lt = 7
else:
lt = len(txt)
nlt = lt + 12
txt = "|" + " " * 5 + txt + " " * 5 + "|"
line = "-" * nlt
empty = "|" + " " * (nlt - 2) + "|"
print(line)
print(empty)
print(txt)
print(empty)
print(line)
def print_header(idx):
b = C.BOLD
bl = C.OKBLUE
e = C.ENDC
char = "≡"
c = cols()
txt = " " * 20
txt += f"{b}{bl}Run {idx}{e}"
txt += " " * 20
ln = len(txt) - len(b) - len(bl) - len(e)
t = int(np.floor((c - ln) / 2))
tt = int(np.ceil((c - ln) / 2))
print(char * c)
print(char * t + " " * ln + char * tt)
print(char * t + txt + char * tt)
print(char * t + " " * ln + char * tt)
print(char * c)
def print_footer():
c = cols()
char = "﹎"
print()
print(char * (c // len(char)))
print()
print(" " * (c // 2) + "•" + " " * (c - c // 2 - 1))
print()
def extend_summary(summary, tmp_train_args_dict, tmp_template_dict, exclude=[]):
exclude = set(exclude)
if summary is None:
summary = defaultdict(list)
for k, v in tmp_template_dict.items():
if k not in exclude:
summary[k].append(v)
for k, v in tmp_train_args_dict.items():
if k not in exclude:
if isinstance(v, list):
v = str(v)
summary[k].append(v)
return summary
def search_summary_table(summary, summary_dir=None):
# filter out constant values
summary = {k: v for k, v in summary.items() if len(set(v)) > 1}
# if everything is constant: no summary
if not summary:
return None, None
# find number of searches
n_searches = len(list(summary.values())[0])
# print section title
print(
"{}{}{}Varying values across {} experiments:{}\n".format(
C.OKBLUE,
C.BOLD,
C.UNDERLINE,
n_searches,
C.ENDC,
)
)
# first column holds the Exp. number
first_col = {
"len": 8, # length of a column, to split columns according to terminal width
"str": ["| Exp. |", "|:----:|"]
+ [
"| {0:^{1}} |".format(i, 4) for i in range(n_searches)
], # list of values to print
}
print_columns = [[first_col]]
file_columns = [first_col]
for k in sorted(summary.keys()):
v = summary[k]
col_title = f" {k} |"
col_blank_line = f":{'-' * len(k)}-|"
col_values = [
" {0:{1}} |".format(
crop_string(
str(crop_float(v[idx], min([5, len(k) - 2]))), len(k)
), # crop floats and long strings
len(k),
)
for idx in range(len(v))
]
# create column object
col = {"len": len(k) + 3, "str": [col_title, col_blank_line] + col_values}
# if adding a new column would overflow the terminal and mess up printing, start
# new set of columns
if sum(c["len"] for c in print_columns[-1]) + col["len"] >= cols():
print_columns.append([first_col])
# store current column to latest group of columns
print_columns[-1].append(col)
file_columns.append(col)
print_table = ""
# print each column group individually
for colgroup in print_columns:
# print columns line by line
for i in range(n_searches + 2):
# get value of column for current line i
for col in colgroup:
print_table += col["str"][i]
# next line for current columns
print_table += "\n"
# new lines for new column group
print_table += "\n"
file_table = ""
for i in range(n_searches + 2):
# get value of column for current line i
for col in file_columns:
file_table += col["str"][i]
# next line for current columns
file_table += "\n"
summary_path = None
if summary_dir is not None:
summary_path = summary_dir / (now() + ".md")
with summary_path.open("w") as f:
f.write(file_table.strip())
return print_table, summary_path
def clean_arg(v):
"""
chain cleaning function
Args:
v (any): arg to pass to train.py
Returns:
str: parsed value to string
"""
return stringify_list(crop_float(quote_string(resolve_env(v))))
def resolve_env(v):
"""
resolve env variables in paths
Args:
v (any): arg to pass to train.py
Returns:
str: try and resolve an env variable
"""
if isinstance(v, str):
try:
if "$" in v:
if "/" in v:
v = env_to_path(v)
else:
_v = os.environ.get(v)
if _v is not None:
v = _v
except Exception:
pass
return v
def stringify_list(v):
"""
Stringify list (with double quotes) so that it can be passed a an argument
to train.py's hydra command-line parsing
Args:
v (any): value to clean
Returns:
any: type of v, str if v was a list
"""
if isinstance(v, list):
return '"{}"'.format(str(v).replace('"', "'"))
if isinstance(v, str):
if v.startswith("[") and v.endswith("]"):
return f'"{v}"'
return v
def quote_string(v):
"""
Add double quotes around string if it contains a " " or an =
Args:
v (any): value to clean
Returns:
any: type of v, quoted if v is a string with " " or =
"""
if isinstance(v, str):
if " " in v or "=" in v:
return f'"{v}"'
return v
def crop_float(v, k=5):
"""
If v is a float, crop precision to 5 digits and return v as a str
Args:
v (any): value to crop if float
Returns:
any: cropped float as str if v is a float, original v otherwise
"""
if isinstance(v, float):
return "{0:.{1}g}".format(v, k)
return v
def compute_n_search(conf):
"""
Compute the number of searchs to do if using -1 as n_search and using
cartesian or sequential search
Args:
conf (dict): experimental configuration
Returns:
int: size of the cartesian product or length of longest sequential field
"""
samples = defaultdict(list)
for k, v in conf.items():
if not isinstance(v, dict) or "sample" not in v:
continue
samples[v["sample"]].append(v)
totals = []
if "cartesian" in samples:
total = 1
for s in samples["cartesian"]:
total *= len(s["from"])
totals.append(total)
if "sequential" in samples:
total = max(map(len, [s["from"] for s in samples["sequential"]]))
totals.append(total)
if totals:
return max(totals)
raise ValueError(
"Used n_search=-1 without any field being 'cartesian' or 'sequential'"
)
def crop_string(s, k=10):
if len(s) <= k:
return s
else:
return s[: k - 2] + ".."
def sample_param(sample_dict):
"""sample a value (hyperparameter) from the instruction in the
sample dict:
{
"sample": "range | list",
"from": [min, max, step] | [v0, v1, v2 etc.]
}
if range, as np.arange is used, "from" MUST be a list, but may contain
only 1 (=min) or 2 (min and max) values, not necessarily 3
Args:
sample_dict (dict): instructions to sample a value
Returns:
scalar: sampled value
"""
if not isinstance(sample_dict, dict) or "sample" not in sample_dict:
return sample_dict
if sample_dict["sample"] == "cartesian":
assert isinstance(
sample_dict["from"], list
), "{}'s `from` field MUST be a list, found {}".format(
sample_dict["sample"], sample_dict["from"]
)
return "__cartesian__"
if sample_dict["sample"] == "sequential":
assert isinstance(
sample_dict["from"], list
), "{}'s `from` field MUST be a list, found {}".format(
sample_dict["sample"], sample_dict["from"]
)
return "__sequential__"
if sample_dict["sample"] == "range":
return np.random.choice(np.arange(*sample_dict["from"]))
if sample_dict["sample"] == "list":
return np.random.choice(sample_dict["from"])
if sample_dict["sample"] == "uniform":
return np.random.uniform(*sample_dict["from"])
raise ValueError("Unknown sample type in dict " + str(sample_dict))
def sample_sequentials(sequential_keys, exp, idx):
"""
Samples sequentially from the "from" values specified in each key of the
experimental configuration which have sample == "sequential"
Unlike `cartesian` sampling, `sequential` sampling iterates *independently*
over each keys
Args:
sequential_keys (list): keys to be sampled sequentially
exp (dict): experimental config
idx (int): index of the current sample
Returns:
conf: sampled dict
"""
conf = {}
for k in sequential_keys:
v = exp[k]["from"]
conf[k] = v[idx % len(v)]
return conf
def sample_cartesians(cartesian_keys, exp, idx):
"""
Returns the `idx`th item in the cartesian product of all cartesian keys to
be sampled.
Args:
cartesian_keys (list): keys in the experimental configuration that are to
be used in the full cartesian product
exp (dict): experimental configuration
idx (int): index of the current sample
Returns:
dict: sampled point in the cartesian space (with keys = cartesian_keys)
"""
conf = {}
cartesian_values = [exp[key]["from"] for key in cartesian_keys]
product = list(itertools.product(*cartesian_values))
for k, v in zip(cartesian_keys, product[idx % len(product)]):
conf[k] = v
return conf
def resolve(hp_conf, nb):
"""
Samples parameters parametrized in `exp`: should be a dict with
values which fit `sample_params(dic)`'s API
Args:
exp (dict): experiment's parametrization
nb (int): number of experiments to sample
Returns:
dict: sampled configuration
"""
if nb == -1:
nb = compute_n_search(hp_conf)
confs = []
for idx in range(nb):
conf = {}
cartesians = []
sequentials = []
for k, v in hp_conf.items():
candidate = sample_param(v)
if candidate == "__cartesian__":
cartesians.append(k)
elif candidate == "__sequential__":
sequentials.append(k)
else:
conf[k] = candidate
if sequentials:
conf.update(sample_sequentials(sequentials, hp_conf, idx))
if cartesians:
conf.update(sample_cartesians(cartesians, hp_conf, idx))
confs.append(conf)
return confs
def get_template_params(template):
"""
extract args in template str as {arg}
Args:
template (str): sbatch template string
Returns:
list(str): Args required to format the template string
"""
return map(
lambda s: s.replace("{", "").replace("}", ""),
re.findall("\{.*?\}", template), # noqa: W605
)
def read_exp_conf(name):
"""
Read hp search configuration from shared/experiment/
specified with or without the .yaml extension
Args:
name (str): name of the template to find in shared/experiment/
Returns:
Tuple(Path, dict): file path and loaded dict
"""
if ".yaml" not in name:
name += ".yaml"
paths = []
dirs = ["shared", "config"]
for d in dirs:
path = Path(__file__).parent / d / "experiment" / name
if path.exists():
paths.append(path.resolve())
if len(paths) == 0:
failed = [Path(__file__).parent / d / "experiment" for d in dirs]
s = "Could not find search config {} in :\n".format(name)
for fd in failed:
s += str(fd) + "\nAvailable:\n"
for ym in fd.glob("*.yaml"):
s += " " + ym.name + "\n"
raise ValueError(s)
if len(paths) == 2:
print(
"Warning: found 2 relevant files for search config:\n{}".format(
"\n".join(paths)
)
)
print("Using {}".format(paths[-1]))
with paths[-1].open("r") as f:
conf = yaml.safe_load(f)
flat_conf = {}
flatten_conf(conf, to=flat_conf)
return (paths[-1], flat_conf)
def read_template(name):
"""
Read template from shared/template/ specified with or without the .sh extension
Args:
name (str): name of the template to find in shared/template/
Returns:
str: file's content as 1 string
"""
if ".sh" not in name:
name += ".sh"
paths = []
dirs = ["shared", "config"]
for d in dirs:
path = Path(__file__).parent / d / "template" / name
if path.exists():
paths.append(path)
if len(paths) == 0:
failed = [Path(__file__).parent / d / "template" for d in dirs]
s = "Could not find template {} in :\n".format(name)
for fd in failed:
s += str(fd) + "\nAvailable:\n"
for ym in fd.glob("*.sh"):
s += " " + ym.name + "\n"
raise ValueError(s)
if len(paths) == 2:
print("Warning: found 2 relevant template files:\n{}".format("\n".join(paths)))
print("Using {}".format(paths[-1]))
with paths[-1].open("r") as f:
return f.read()
def is_sampled(key, conf):
"""
Is a key sampled or constant? Returns true if conf is empty
Args:
key (str): key to check
conf (dict): hyper parameter search configuration dict
Returns:
bool: key is sampled?
"""
return not conf or (
key in conf and isinstance(conf[key], dict) and "sample" in conf[key]
)
if __name__ == "__main__":
"""
Notes:
* Must provide template name as template=name
* `name`.sh should be in shared/template/
"""
# -------------------------------
# ----- Default Variables -----
# -------------------------------
args = sys.argv[1:]
command_output = ""
user = os.environ.get("USER")
home = os.environ.get("HOME")
exp_conf = {}
dev = False
escape = False
verbose = False
template_name = None
hp_exp_name = None
hp_search_nb = None
exp_path = None
resume = None
force_sbatchs = False
sbatch_base = Path(home) / "climategan_sbatchs"
summary_dir = Path(home) / "climategan_exp_summaries"
hp_search_private = set(["n_search", "template", "search", "summary_dir"])
sbatch_path = "hash"
# --------------------------
# ----- Sanity Check -----
# --------------------------
for arg in args:
if "=" not in arg or " = " in arg:
raise ValueError(
"Args should be passed as `key=value`. Received `{}`".format(arg)
)
# --------------------------------
# ----- Parse Command Line -----
# --------------------------------
args_dict = {arg.split("=")[0]: arg.split("=")[1] for arg in args}
assert "template" in args_dict, "Please specify template=xxx"
template = read_template(args_dict["template"])
template_dict = {k: None for k in get_template_params(template)}
train_args = []
for k, v in args_dict.items():
if k == "verbose":
if v != "0":
verbose = True
elif k == "sbatch_path":
sbatch_path = v
elif k == "sbatch_base":
sbatch_base = Path(v).resolve()
elif k == "force_sbatchs":
force_sbatchs = v.lower() == "true"
elif k == "dev":
if v.lower() != "false":
dev = True
elif k == "escape":
if v.lower() != "false":
escape = True
elif k == "template":
template_name = v
elif k == "exp":
hp_exp_name = v
elif k == "n_search":
hp_search_nb = int(v)
elif k == "resume":
resume = f'"{v}"'
template_dict[k] = f'"{v}"'
elif k == "summary_dir":
if v.lower() == "none":
summary_dir = None
else:
summary_dir = Path(v)
elif k in template_dict:
template_dict[k] = v
else:
train_args.append(f"{k}={v}")
# ------------------------------------
# ----- Load Experiment Config -----
# ------------------------------------
if hp_exp_name is not None:
exp_path, exp_conf = read_exp_conf(hp_exp_name)
if "n_search" in exp_conf and hp_search_nb is None:
hp_search_nb = exp_conf["n_search"]
assert (
hp_search_nb is not None
), "n_search should be specified in a yaml file or from the command line"
hps = resolve(exp_conf, hp_search_nb)
else:
hps = [None]
# ---------------------------------
# ----- Run All Experiments -----
# ---------------------------------
if summary_dir is not None:
summary_dir.mkdir(exist_ok=True, parents=True)
summary = None
for hp_idx, hp in enumerate(hps):
# copy shared values
tmp_template_dict = template_dict.copy()
tmp_train_args = train_args.copy()
tmp_train_args_dict = {
arg.split("=")[0]: arg.split("=")[1] for arg in tmp_train_args
}
print_header(hp_idx)
# override shared values with run-specific values for run hp_idx/n_search
if hp is not None:
for k, v in hp.items():
if k == "resume" and resume is None:
resume = f'"{v}"'
# hp-search params to ignore
if k in hp_search_private:
continue
if k == "codeloc":
v = escape_path(v)
if k == "output":
Path(v).parent.mkdir(parents=True, exist_ok=True)
# override template params depending on exp config
if k in tmp_template_dict:
if template_dict[k] is None or is_sampled(k, exp_conf):
tmp_template_dict[k] = v
# store sampled / specified params in current tmp_train_args_dict
else:
if k in tmp_train_args_dict:
if is_sampled(k, exp_conf):
# warn if key was specified from the command line
tv = tmp_train_args_dict[k]
warn(
"\nWarning: overriding sampled config-file arg",
"{} to command-line value {}\n".format(k, tv),
)
else:
tmp_train_args_dict[k] = v
# create sbatch file where required
tmp_sbatch_path = None
if sbatch_path == "hash":
tmp_sbatch_name = "" if hp_exp_name is None else hp_exp_name[:14] + "_"
tmp_sbatch_name += now() + ".sh"
tmp_sbatch_path = sbatch_base / tmp_sbatch_name
tmp_sbatch_path.parent.mkdir(parents=True, exist_ok=True)
tmp_train_args_dict["sbatch_file"] = str(tmp_sbatch_path)
tmp_train_args_dict["exp_file"] = str(exp_path)
else:
tmp_sbatch_path = Path(sbatch_path).resolve()
summary = extend_summary(
summary, tmp_train_args_dict, tmp_template_dict, exclude=["sbatch_file"]
)
# format train.py's args and crop floats' precision to 5 digits
tmp_template_dict["train_args"] = " ".join(
sorted(
[
"{}={}".format(k, clean_arg(v))
for k, v in tmp_train_args_dict.items()
]
)
)
if "resume.py" in template and resume is None:
raise ValueError("No `resume` value but using a resume.py template")
# format template with clean dict (replace None with "")
sbatch = template.format(
**{
k: v if v is not None else ""
for k, v in tmp_template_dict.items()
if k in template_dict
}
)
# --------------------------------------
# ----- Execute `sbatch` Command -----
# --------------------------------------
if not dev or force_sbatchs:
if tmp_sbatch_path.exists():
print(f"Warning: overwriting {sbatch_path}")
# write sbatch file
with open(tmp_sbatch_path, "w") as f:
f.write(sbatch)
if not dev:
# escape special characters such as " " from sbatch_path's parent dir
parent = str(tmp_sbatch_path.parent)
if escape:
parent = escape_path(parent)
# create command to execute in a subprocess
command = "sbatch {}".format(tmp_sbatch_path.name)
# execute sbatch command & store output
command_output = subprocess.run(
command.split(), stdout=subprocess.PIPE, cwd=parent
)
command_output = "\n" + command_output.stdout.decode("utf-8") + "\n"
print(f"Running from {parent}:")
print(f"$ {command}")
# ---------------------------------
# ----- Summarize Execution -----
# ---------------------------------
if verbose:
print(C.BEIGE + C.ITALIC, "\n" + sbatch + C.ENDC)
if not dev:
print_box(command_output.strip())
jobID = parse_jobID(command_output.strip())
summary["Slurm JOBID"].append(jobID)
summary["Comet Link"].append(f"[{hp_idx}][{hp_idx}]")
print(
"{}{}Summary{} {}:".format(
C.UNDERLINE,
C.OKGREEN,
C.ENDC,
f"{C.WARNING}(DEV){C.ENDC}" if dev else "",
)
)
print(
" "
+ "\n ".join(
"{:10}: {}".format(k, v) for k, v in tmp_template_dict.items()
)
)
print_footer()
print(f"\nRan a total of {len(hps)} jobs{' in dev mode.' if dev else '.'}\n")
table, sum_path = search_summary_table(summary, summary_dir if not dev else None)
if table is not None:
print(table)
print(
"Add `[i]: https://...` at the end of a markdown document",
"to fill in the comet links.\n",
)
if summary_dir is None:
print("Add summary_dir=path to store the printed markdown table ⇪")
else:
print("Saved table in", str(sum_path))
if not dev:
print(
"Cancel entire experiment? \n$ scancel",
" ".join(map(str, summary["Slurm JOBID"])),
)