-
Notifications
You must be signed in to change notification settings - Fork 11
/
index.html
836 lines (834 loc) · 432 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
<!DOCTYPE html>
<html>
<head>
<link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" rel="stylesheet"/>
<link href="css/notebook.css" rel="stylesheet"/>
<link href="css/pygments/notebook/colorful.css" rel="stylesheet"/>
<link href="css/main.css" rel="stylesheet"/>
</head>
<body>
<div class="container">
<h1>
Integrating a Jupyter Notebook in a Web Page
</h1>
<p>
Some text.
</p>
<h2>
Maths
</h2>
<p>
Here is a simple inline equation: $E=mc^2$.
</p>
<p>
And for longer equations, use the standard math mode:
</p>
$$
\mathcal{L}=\bar{\psi}\left(i\gamma^{\mu}\partial_ {\mu}-m\right)\psi
$$
<h2>
A code section
</h2>
<p>
Here is some code:
</p>
<div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">foo</span>
<span class="k">print</span> <span class="n">foo</span><span class="o">.</span><span class="n">bar</span><span class="p">()</span>
</pre></div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Introduction">
Introduction
<a class="anchor-link" href="#Introduction">
¶
</a>
</h2>
<p>
Overfitting is one of the most important issues in machine learning, if not the most important.
</p>
<p>
In this post, I'll illustrate overfitting in the context of a small 2D classification problem.
</p>
<p>
But what is going to be explained here is important, and should be kept in mind at all times when working on more complex problems.
</p>
<p>
You will learn:
</p>
<ul>
<li>
what is overfitting, and see it with your own eyes
</li>
<li>
how to avoid overfitting
</li>
<li>
that if you use a neural network that is too complex for the amount of data you have, you'll just get crap.
</li>
<li>
that complex models are still necessary to deal with complex problems, otherwise you get underfitting.
</li>
</ul>
<p>
<strong>
Prerequisites
</strong>
:
</p>
<ul>
<li>
You should know a bit of numpy and matplotlib, and be familiar with classification in 2D. If not, you can have a look at
<a href="https://thedatafrog.com/logistic-regression-neural-network/">
my tutorial about logistic regression and neural networks for 2D classification
</a>
</li>
</ul>
<p>
To run the code in this tutorial, you can simply
<a href="https://colab.research.google.com/github/cbernet/maldives/blob/master/overfitting/overfitting.ipynb">
open it in google colab
</a>
.
</p>
<p>
Alternatively, if you have
<a href="https://www.anaconda.com">
Anaconda
</a>
installed (2.X or 3.X), you can:
</p>
<ul>
<li>
<a href="https://github.com/cbernet/maldives/archive/master.zip">
download the repository containing this notebook
</a>
</li>
<li>
unzip it, say to
<code>
Downloads/maldives-master
</code>
</li>
<li>
launch a jupyter notebook from the anaconda navigator
</li>
<li>
in jupyter notebook, navigate to
<code>
Downloads/maldives-master/overfitting
</code>
</li>
<li>
open
<code>
overfitting.ipynb
</code>
</li>
</ul>
<p>
First, let's setup our tools:
</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [1]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="o">%</span><span class="k">matplotlib</span> inline
<span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mh">0xdeadbeef</span><span class="p">)</span>
<span class="c1"># blah</span>
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Building-a-small-dataset">
Building a small dataset
<a class="anchor-link" href="#Building-a-small-dataset">
¶
</a>
</h2>
<p>
Let's create a sample of examples with two values x1 and x2, with two categories.
For category 0, the underlying probability distribution is a 2D Gaussian centered on (0,0), with width = 1 along both directions. For category 1, the Gaussian is centered on (1,1). We assign label 0 to category 0, and label 1 to category 1.
</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [17]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="k">def</span> <span class="nf">make_sample</span><span class="p">(</span><span class="n">nexamples</span><span class="p">,</span> <span class="n">means</span><span class="o">=</span><span class="p">([</span><span class="mf">0.</span><span class="p">,</span><span class="mf">0.</span><span class="p">],[</span><span class="mf">1.</span><span class="p">,</span><span class="mf">1.</span><span class="p">]),</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">1.</span><span class="p">):</span>
<span class="n">normal</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">multivariate_normal</span>
<span class="c1"># squared width:</span>
<span class="n">s2</span> <span class="o">=</span> <span class="n">sigma</span><span class="o">**</span><span class="mf">2.</span>
<span class="c1"># below, we provide the coordinates of the mean as </span>
<span class="c1"># a first argument, and then the covariance matrix</span>
<span class="c1"># which describes the width of the Gaussian along the </span>
<span class="c1"># two directions. </span>
<span class="c1"># we generate nexamples examples for each category</span>
<span class="n">sgx0</span> <span class="o">=</span> <span class="n">normal</span><span class="p">(</span><span class="n">means</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">[[</span><span class="n">s2</span><span class="p">,</span> <span class="mf">0.</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.</span><span class="p">,</span><span class="n">s2</span><span class="p">]],</span> <span class="n">nexamples</span><span class="p">)</span>
<span class="n">sgx1</span> <span class="o">=</span> <span class="n">normal</span><span class="p">(</span><span class="n">means</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="p">[[</span><span class="n">s2</span><span class="p">,</span> <span class="mf">0.</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.</span><span class="p">,</span><span class="n">s2</span><span class="p">]],</span> <span class="n">nexamples</span><span class="p">)</span>
<span class="c1"># setting the labels for each category</span>
<span class="n">sgy0</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">nexamples</span><span class="p">,))</span>
<span class="n">sgy1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">((</span><span class="n">nexamples</span><span class="p">,))</span>
<span class="n">sgx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">([</span><span class="n">sgx0</span><span class="p">,</span><span class="n">sgx1</span><span class="p">])</span>
<span class="n">sgy</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">([</span><span class="n">sgy0</span><span class="p">,</span><span class="n">sgy1</span><span class="p">])</span>
<span class="k">return</span> <span class="n">sgx</span><span class="p">,</span> <span class="n">sgy</span>
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>
Here, we create a very small training sample with only 30 examples per category, and a test sample with 200 examples per category. We're using such a small training sample because, as will be shown in this post, small samples are very easy to overfit.
</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [18]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="n">sgx</span><span class="p">,</span> <span class="n">sgy</span> <span class="o">=</span> <span class="n">make_sample</span><span class="p">(</span><span class="mi">30</span><span class="p">)</span>
<span class="n">tgx</span><span class="p">,</span> <span class="n">tgy</span> <span class="o">=</span> <span class="n">make_sample</span><span class="p">(</span><span class="mi">200</span><span class="p">)</span>
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [4]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="c1"># note how the two categories are plotted</span>
<span class="c1"># together in one go by providing the </span>
<span class="c1"># label array as color argument (c=sgy)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">sgx</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">sgx</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">c</span><span class="o">=</span><span class="n">sgy</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'x1'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'x2'</span><span class="p">)</span>
</pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">
Out[4]:
</div>
<div class="output_text output_subarea output_execute_result">
<pre>Text(0, 0.5, 'x2')</pre>
</div>
</div>
<div class="output_area">
<div class="prompt">
</div>
<div class="output_png output_subarea ">
<img src="
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>
We see that with such a low number of examples, it is not obvious that the samples follow Gaussian probability density functions. Also, since the Gaussians are so close, it's going to be quite difficult to separate the two categories.
</p>
<h2 id="Overfitting">
Overfitting
<a class="anchor-link" href="#Overfitting">
¶
</a>
</h2>
<p>
Let's try anyway with a neural network from scikit-learn. Here is an explanation of the parameters I use below:
</p>
<ul>
<li>
three hidden layers with 50 neurons each. I've chosen this fairly complex configuration on purpose to illustrate overfitting, which occurs when the model is too complex for the amount of data in the training sample.
</li>
<li>
relu activation, because relu makes the training easier in neural nets with hidden layers.
</li>
<li>
an increased maximum number of iterations, so that the network has time to converge
</li>
<li>
a fixed random seed so that you can get the exact same results as me, every time you run the code
</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [5]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="kn">from</span> <span class="nn">sklearn.neural_network</span> <span class="k">import</span> <span class="n">MLPClassifier</span>
<span class="n">mlp</span> <span class="o">=</span> <span class="n">MLPClassifier</span><span class="p">(</span><span class="n">hidden_layer_sizes</span><span class="o">=</span><span class="p">(</span><span class="mi">50</span><span class="p">,</span><span class="mi">50</span><span class="p">,</span><span class="mi">50</span><span class="p">),</span> <span class="n">activation</span><span class="o">=</span><span class="s1">'relu'</span><span class="p">,</span> <span class="n">max_iter</span><span class="o">=</span><span class="mi">10000</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">sgx</span><span class="p">,</span><span class="n">sgy</span><span class="p">)</span>
</pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">
Out[5]:
</div>
<div class="output_text output_subarea output_execute_result">
<pre>MLPClassifier(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9,
beta_2=0.999, early_stopping=False, epsilon=1e-08,
hidden_layer_sizes=(50, 50, 50), learning_rate='constant',
learning_rate_init=0.001, max_iter=10000, momentum=0.9,
n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5,
random_state=1, shuffle=True, solver='adam', tol=0.0001,
validation_fraction=0.1, verbose=False, warm_start=False)</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>
Now let's define a small function to plot our results. The function will plot the examples in the two categories, as well as the probability that an (x1,x2) point belongs to category 1 (black means that this probability is close to 1, and white to 0.)
</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [6]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="k">def</span> <span class="nf">plot_result</span><span class="p">(</span><span class="n">sample</span><span class="p">,</span> <span class="n">targets</span><span class="p">,</span> <span class="n">linrange</span><span class="o">=</span><span class="p">(</span><span class="o">-</span><span class="mi">5</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">101</span><span class="p">)):</span>
<span class="n">xmin</span><span class="p">,</span> <span class="n">xmax</span><span class="p">,</span> <span class="n">npoints</span> <span class="o">=</span> <span class="n">linrange</span>
<span class="n">gridx1</span><span class="p">,</span> <span class="n">gridx2</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="n">xmin</span><span class="p">,</span><span class="n">xmax</span><span class="p">,</span><span class="n">npoints</span><span class="p">),</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="n">xmin</span><span class="p">,</span><span class="n">xmax</span><span class="p">,</span><span class="n">npoints</span><span class="p">))</span>
<span class="n">grid</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">c_</span><span class="p">[</span><span class="n">gridx1</span><span class="o">.</span><span class="n">flatten</span><span class="p">(),</span> <span class="n">gridx2</span><span class="o">.</span><span class="n">flatten</span><span class="p">()]</span>
<span class="n">probs</span> <span class="o">=</span> <span class="n">mlp</span><span class="o">.</span><span class="n">predict_proba</span><span class="p">(</span><span class="n">grid</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">pcolor</span><span class="p">(</span><span class="n">gridx1</span><span class="p">,</span> <span class="n">gridx2</span><span class="p">,</span> <span class="n">probs</span><span class="p">[:,</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">npoints</span><span class="p">,</span><span class="n">npoints</span><span class="p">),</span> <span class="n">cmap</span><span class="o">=</span><span class="s1">'binary'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">sample</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">sample</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">targets</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s1">'plasma'</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">marker</span><span class="o">=</span><span class="s1">'.'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'x1'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'x2'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [7]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="n">plot_result</span><span class="p">(</span><span class="n">sgx</span><span class="p">,</span><span class="n">sgy</span><span class="p">)</span>
</pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt">
</div>
<div class="output_png output_subarea ">
<img src="
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>
Very nice eagle, but the probability distribution is very far from being optimal. We see that at the frontier, the neural network does its best to follow the patterns of the training sample. It is able to do that because its large number of parameters make it very flexible and adaptive.
</p>
<p>
But let's see what happens if we plot the probability distribution with the larger test sample:
</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [8]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="n">plot_result</span><span class="p">(</span><span class="n">tgx</span><span class="p">,</span><span class="n">tgy</span><span class="p">)</span>
</pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt">
</div>
<div class="output_png output_subarea ">
<img src="
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>
There are many examples that are classified in the wrong category. This neural network is very good with the training sample, but it has lost its generality and is thus useless in practice.
</p>
<p>
<strong>
This is overfitting.
</strong>
</p>
<h2 id="Fixing-overfitting">
Fixing overfitting
<a class="anchor-link" href="#Fixing-overfitting">
¶
</a>
</h2>
<p>
Now let's try again, but with a much more simple network, with a single layer with five neurons. The network is trained with the small training sample, and displayed with the larger test sample:
</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [9]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="n">mlp</span> <span class="o">=</span> <span class="n">MLPClassifier</span><span class="p">(</span><span class="n">hidden_layer_sizes</span><span class="o">=</span><span class="p">(</span><span class="mi">5</span><span class="p">,),</span> <span class="n">activation</span><span class="o">=</span><span class="s1">'relu'</span><span class="p">,</span> <span class="n">max_iter</span><span class="o">=</span><span class="mi">10000</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">sgx</span><span class="p">,</span><span class="n">sgy</span><span class="p">)</span>
<span class="n">plot_result</span><span class="p">(</span><span class="n">tgx</span><span class="p">,</span><span class="n">tgy</span><span class="p">)</span>
</pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt">
</div>
<div class="output_png output_subarea ">
<img src="
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>
This time, overfitting is much less of an issue. The network does not have enough parameters to be able to follow the random patterns of the training sample. Therefore, it behaves quite well on the test sample.
</p>
<p>
Let's try something else. This time, we use the complex network, but we provide much more training data: 10,000 examples per category instead of 30.
</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [19]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="n">sgx</span><span class="p">,</span> <span class="n">sgy</span> <span class="o">=</span> <span class="n">make_sample</span><span class="p">(</span><span class="mi">10000</span><span class="p">)</span>
<span class="n">mlp</span> <span class="o">=</span> <span class="n">MLPClassifier</span><span class="p">(</span><span class="n">hidden_layer_sizes</span><span class="o">=</span><span class="p">(</span><span class="mi">50</span><span class="p">,</span><span class="mi">50</span><span class="p">,</span><span class="mi">50</span><span class="p">),</span> <span class="n">activation</span><span class="o">=</span><span class="s1">'relu'</span><span class="p">,</span> <span class="n">max_iter</span><span class="o">=</span><span class="mi">10000</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">sgx</span><span class="p">,</span><span class="n">sgy</span><span class="p">)</span>
<span class="n">plot_result</span><span class="p">(</span><span class="n">tgx</span><span class="p">,</span> <span class="n">tgy</span><span class="p">)</span>
</pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt">
</div>
<div class="output_png output_subarea ">
<img src="
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>
The network took a bit longer to train but this time, there is enough training data to properly constrain the parameters of the network, and the classification performance is going to be good in general.
</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="So-why-do-we-need-complex-networks-then?">
So why do we need complex networks then?
<a class="anchor-link" href="#So-why-do-we-need-complex-networks-then?">
¶
</a>
</h2>
<p>
Well, to describe complex data! And for these networks to be efficient in this task, we will need a lot of training data.
</p>
<p>
In this section, we'll build a complex dataset with a lot of data, and see how well we can classify it.
</p>
<p>
To build the dataset, we just reuse our make_sample function several times and concatenate the resulting samples:
</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [11]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="n">sgxa</span><span class="p">,</span> <span class="n">sgya</span> <span class="o">=</span> <span class="n">make_sample</span><span class="p">(</span><span class="mi">1000</span><span class="p">,</span> <span class="p">([</span><span class="mf">0.</span><span class="p">,</span><span class="mi">0</span><span class="p">],[</span><span class="mf">3.</span><span class="p">,</span><span class="mf">3.</span><span class="p">]),</span> <span class="mf">0.3</span><span class="p">)</span>
<span class="n">sgxb</span><span class="p">,</span> <span class="n">sgyb</span> <span class="o">=</span> <span class="n">make_sample</span><span class="p">(</span><span class="mi">1000</span><span class="p">,</span> <span class="p">([</span><span class="mf">1.</span><span class="p">,</span><span class="mi">1</span><span class="p">],[</span><span class="mf">4.</span><span class="p">,</span><span class="mf">4.</span><span class="p">]),</span> <span class="mf">0.3</span><span class="p">)</span>
<span class="n">sgxc</span><span class="p">,</span> <span class="n">sgyc</span> <span class="o">=</span> <span class="n">make_sample</span><span class="p">(</span><span class="mi">1000</span><span class="p">,</span> <span class="p">([</span><span class="mf">5.</span><span class="p">,</span><span class="mf">5.</span><span class="p">],[</span><span class="o">-</span><span class="mf">2.</span><span class="p">,</span><span class="o">-</span><span class="mf">2.</span><span class="p">]),</span> <span class="mf">0.6</span><span class="p">)</span>
<span class="n">sgxd</span><span class="p">,</span> <span class="n">sgyd</span> <span class="o">=</span> <span class="n">make_sample</span><span class="p">(</span><span class="mi">1000</span><span class="p">,</span> <span class="p">([</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="mf">3.</span><span class="p">],[</span><span class="mf">3.</span><span class="p">,</span><span class="o">-</span><span class="mf">1.</span><span class="p">]),</span> <span class="mf">0.3</span><span class="p">)</span>
<span class="n">sgx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">([</span><span class="n">sgxa</span><span class="p">,</span><span class="n">sgxb</span><span class="p">,</span><span class="n">sgxc</span><span class="p">,</span><span class="n">sgxd</span><span class="p">])</span>
<span class="n">sgy</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">([</span><span class="n">sgya</span><span class="p">,</span><span class="n">sgyb</span><span class="p">,</span><span class="n">sgyc</span><span class="p">,</span><span class="n">sgyd</span><span class="p">])</span>
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [12]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">sgx</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">sgx</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">c</span><span class="o">=</span><span class="n">sgy</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'x1'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'x2'</span><span class="p">)</span>
</pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">
Out[12]:
</div>
<div class="output_text output_subarea output_execute_result">
<pre>Text(0, 0.5, 'x2')</pre>
</div>
</div>
<div class="output_area">
<div class="prompt">
</div>
<div class="output_png output_subarea ">
<img src="
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>
Now, let's build a small network and see if we can classify that.
</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [13]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="n">mlp</span> <span class="o">=</span> <span class="n">MLPClassifier</span><span class="p">(</span><span class="n">hidden_layer_sizes</span><span class="o">=</span><span class="p">(</span><span class="mi">3</span><span class="p">,),</span> <span class="n">activation</span><span class="o">=</span><span class="s1">'relu'</span><span class="p">,</span> <span class="n">max_iter</span><span class="o">=</span><span class="mi">10000</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">sgx</span><span class="p">,</span><span class="n">sgy</span><span class="p">)</span>
</pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">
Out[13]:
</div>
<div class="output_text output_subarea output_execute_result">
<pre>MLPClassifier(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9,
beta_2=0.999, early_stopping=False, epsilon=1e-08,
hidden_layer_sizes=(3,), learning_rate='constant',
learning_rate_init=0.001, max_iter=10000, momentum=0.9,
n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5,
random_state=1, shuffle=True, solver='adam', tol=0.0001,
validation_fraction=0.1, verbose=False, warm_start=False)</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [14]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="n">plot_result</span><span class="p">(</span><span class="n">sgx</span><span class="p">,</span><span class="n">sgy</span><span class="p">,</span><span class="n">linrange</span><span class="o">=</span><span class="p">(</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">201</span><span class="p">))</span>
</pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt">
</div>
<div class="output_png output_subarea ">
<img src="
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>
The network does not have enough parameters to fit the training data.
</p>
<p>
<strong>
This is underfitting.
</strong>
</p>
<p>
Still, it does quite a good job with its three neurons.
</p>
<p>
Let's increase the number of neurons on the hidden layer a bit:
</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [15]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="n">mlp</span> <span class="o">=</span> <span class="n">MLPClassifier</span><span class="p">(</span><span class="n">hidden_layer_sizes</span><span class="o">=</span><span class="p">(</span><span class="mi">5</span><span class="p">,),</span> <span class="n">activation</span><span class="o">=</span><span class="s1">'relu'</span><span class="p">,</span> <span class="n">max_iter</span><span class="o">=</span><span class="mi">10000</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">sgx</span><span class="p">,</span><span class="n">sgy</span><span class="p">)</span>
<span class="n">plot_result</span><span class="p">(</span><span class="n">sgx</span><span class="p">,</span><span class="n">sgy</span><span class="p">,</span><span class="n">linrange</span><span class="o">=</span><span class="p">(</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">201</span><span class="p">))</span>
</pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt">
</div>
<div class="output_png output_subarea ">
<img src="
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>
Wow! 5 neurons is already enough to fit the data, but we're a bit lucky. With a different topology we could have missed a patch.
</p>
<p>
Let's increase the complexity of the model even further:
</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [16]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span></span><span class="n">mlp</span> <span class="o">=</span> <span class="n">MLPClassifier</span><span class="p">(</span><span class="n">hidden_layer_sizes</span><span class="o">=</span><span class="p">(</span><span class="mi">50</span><span class="p">,</span><span class="mi">50</span><span class="p">,</span><span class="mi">50</span><span class="p">),</span> <span class="n">activation</span><span class="o">=</span><span class="s1">'relu'</span><span class="p">,</span> <span class="n">max_iter</span><span class="o">=</span><span class="mi">10000</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">sgx</span><span class="p">,</span><span class="n">sgy</span><span class="p">)</span>
<span class="n">plot_result</span><span class="p">(</span><span class="n">sgx</span><span class="p">,</span><span class="n">sgy</span><span class="p">,</span><span class="n">linrange</span><span class="o">=</span><span class="p">(</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">201</span><span class="p">))</span>
</pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt">
</div>
<div class="output_png output_subarea ">
<img src="
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>
Still no overfitting. The network now shows a smooth boundary, and I'm pretty sure it would be able to adapt further if needed.
</p>
<p>
Now
<a href="https://thedatafrog.com/overfitting-illustrated#conclusion">
let's go back and wrap up!
</a>
</p>
</div>
</div>
</div>
</div>
<!-- mathjax -->
<script async="" id="MathJax-script" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js">
</script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6">
</script>
<script>
MathJax = {
tex: {
inlineMath: [['$', '$'], ['\\(', '\\)']]
},
svg: {
fontCache: 'global'
}
};
</script>
</body>
</html>