-
Notifications
You must be signed in to change notification settings - Fork 23
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into solve_gin_test_config_tracking
- Loading branch information
Showing
3 changed files
with
255 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -73,6 +73,24 @@ jobs: | |
git config --global user.name "CI Almighty" | ||
datalad install -rg https://gin.g-node.org/CatalystNeuro/ophys_testing_data | ||
- name: Get behavior_testing_data current head hash | ||
id: behavior | ||
run: echo "::set-output name=HASH_BEHAVIOR_DATASET::$(git ls-remote https://gin.g-node.org/CatalystNeuro/behavior_testing_data.git HEAD | cut -f1)" | ||
- name: Cache behavior dataset - ${{ steps.behavior.outputs.HASH_BEHAVIOR_DATASET }} | ||
uses: actions/cache@v2 | ||
id: cache-behavior-datasets | ||
with: | ||
path: /home/runner/work/nwb-conversion-tools/nwb-conversion-tools/behavior_testing_data | ||
key: behavior-datasets-8-${{ steps.behavior.outputs.HASH_behavior_DATASET }} | ||
restore-keys: behavior-datasets-8-${{ steps.behavior.outputs.HASH_behavior_DATASET }} | ||
- name: Force GIN behavior download | ||
if: steps.cache-behavior-datasets.outputs.cache-hit == false | ||
run: | | ||
conda install -c conda-forge datalad==0.14.5 | ||
git config --global user.email "[email protected]" | ||
git config --global user.name "CI Almighty" | ||
datalad install -rg https://gin.g-node.org/CatalystNeuro/behavior_testing_data | ||
- name: Run full pytest with coverage | ||
run: pytest --cov=./ --cov-report xml:/home/runner/work/nwb-conversion-tools/nwb-conversion-tools/coverage.xml | ||
- if: ${{ matrix.python-version == '3.9' }} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -66,4 +66,22 @@ jobs: | |
cd ophys_testing_data | ||
datalad get -r ./imaging_datasets/ | ||
datalad get -r ./segmentation_datasets/ | ||
cd .. | ||
cd .. | ||
- name: Get behavior_testing_data current head hash | ||
id: behavior | ||
run: echo "::set-output name=HASH_BEHAVIOR_DATASET::$(git ls-remote https://gin.g-node.org/CatalystNeuro/behavior_testing_data.git HEAD | cut -f1)" | ||
- name: Cache behavior dataset - ${{ steps.behavior.outputs.HASH_BEHAVIOR_DATASET }} | ||
uses: actions/cache@v2 | ||
id: cache-behavior-datasets | ||
with: | ||
path: /home/runner/work/nwb-conversion-tools/nwb-conversion-tools/behavior_testing_data | ||
key: behavior-datasets-8-${{ steps.behavior.outputs.HASH_behavior_DATASET }} | ||
restore-keys: behavior-datasets-8-${{ steps.behavior.outputs.HASH_behavior_DATASET }} | ||
- name: Force GIN behavior download | ||
if: steps.cache-behavior-datasets.outputs.cache-hit == false | ||
run: | | ||
conda install -c conda-forge datalad==0.14.5 | ||
git config --global user.email "[email protected]" | ||
git config --global user.name "CI Almighty" | ||
datalad install -rg https://gin.g-node.org/CatalystNeuro/behavior_testing_data |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,218 @@ | ||
import tempfile | ||
import unittest | ||
import os | ||
from pathlib import Path | ||
from datetime import datetime | ||
|
||
import pytest | ||
import numpy as np | ||
from pynwb import NWBHDF5IO | ||
from nwb_conversion_tools import NWBConverter, MovieInterface | ||
from nwb_conversion_tools.utils import load_dict_from_file | ||
|
||
|
||
# Load the configuration for the data tests | ||
test_config_dict = load_dict_from_file(Path(__file__).parent / "gin_test_config.json") | ||
|
||
# GIN dataset: https://gin.g-node.org/CatalystNeuro/behavior_testing_data | ||
if os.getenv("CI"): | ||
LOCAL_PATH = Path(".") # Must be set to "." for CI | ||
print("Running GIN tests on Github CI!") | ||
else: | ||
# Override LOCAL_PATH in the `gin_test_config.json` file to a point on your system that contains the dataset folder | ||
# Use DANDIHub at hub.dandiarchive.org for open, free use of data found in the /shared/catalystneuro/ directory | ||
LOCAL_PATH = Path(test_config_dict["LOCAL_PATH"]) | ||
print("Running GIN tests locally!") | ||
BEHAVIOR_DATA_PATH = LOCAL_PATH / "behavior_testing_data" | ||
HAVE_BEHAVIOR_DATA = BEHAVIOR_DATA_PATH.exists() | ||
|
||
if test_config_dict["SAVE_OUTPUTS"]: | ||
OUTPUT_PATH = LOCAL_PATH / "example_nwb_output" | ||
OUTPUT_PATH.mkdir(exist_ok=True) | ||
else: | ||
OUTPUT_PATH = Path(tempfile.mkdtemp()) | ||
|
||
if not HAVE_BEHAVIOR_DATA: | ||
pytest.fail(f"No oephys_testing_data folder found in location: {BEHAVIOR_DATA_PATH}!") | ||
|
||
|
||
class TestMovieDataNwbConversions(unittest.TestCase): | ||
savedir = OUTPUT_PATH | ||
|
||
def setUp(self) -> None: | ||
self.movie_files = list((BEHAVIOR_DATA_PATH / "videos" / "CFR").iterdir()) | ||
self.nwb_converter = self.create_movie_converter() | ||
self.nwbfile_path = os.path.join(self.savedir, "movie_test.nwb") | ||
|
||
def create_movie_converter(self): | ||
class MovieTestNWBConverter(NWBConverter): | ||
data_interface_classes = dict(Movie=MovieInterface) | ||
|
||
source_data = dict(Movie=dict(file_paths=self.movie_files)) | ||
return MovieTestNWBConverter(source_data) | ||
|
||
def get_metadata(self): | ||
metadata = self.nwb_converter.get_metadata() | ||
metadata["NWBFile"].update(session_start_time=datetime.now().astimezone().strftime("%Y-%m-%dT%H:%M:%S")) | ||
return metadata | ||
|
||
def test_movie_starting_times(self): | ||
starting_times = [np.float(np.random.randint(200)) for i in range(len(self.movie_files))] | ||
conversion_opts = dict(Movie=dict(starting_times=starting_times, external_mode=False)) | ||
self.nwb_converter.run_conversion( | ||
nwbfile_path=self.nwbfile_path, | ||
overwrite=True, | ||
conversion_options=conversion_opts, | ||
metadata=self.get_metadata(), | ||
) | ||
with NWBHDF5IO(path=self.nwbfile_path, mode="r") as io: | ||
nwbfile = io.read() | ||
mod = nwbfile.acquisition | ||
metadata = self.nwb_converter.get_metadata() | ||
for no in range(len(metadata["Behavior"]["Movies"])): | ||
movie_interface_name = metadata["Behavior"]["Movies"][no]["name"] | ||
assert movie_interface_name in mod | ||
if mod[movie_interface_name].starting_time is not None: | ||
assert starting_times[no] == mod[movie_interface_name].starting_time | ||
else: | ||
assert starting_times[no] == mod[movie_interface_name].timestamps[0] | ||
|
||
def test_movie_starting_times_none(self): | ||
"""For multiple ImageSeries containers, starting times must be provided with len(movie_files)""" | ||
conversion_opts = dict(Movie=dict(external_mode=False)) | ||
with self.assertRaises(ValueError): | ||
self.nwb_converter.run_conversion( | ||
nwbfile_path=self.nwbfile_path, | ||
overwrite=True, | ||
conversion_options=conversion_opts, | ||
metadata=self.get_metadata(), | ||
) | ||
|
||
def test_movie_starting_times_none_duplicate(self): | ||
"""When all movies go in one ImageSeries container, starting times should be assumed 0.0""" | ||
conversion_opts = dict(Movie=dict(external_mode=True)) | ||
metadata = self.get_metadata() | ||
movie_interface_name = metadata["Behavior"]["Movies"][0]["name"] | ||
for no in range(1, len(self.movie_files)): | ||
metadata["Behavior"]["Movies"][no]["name"] = movie_interface_name | ||
self.nwb_converter.run_conversion( | ||
nwbfile_path=self.nwbfile_path, | ||
overwrite=True, | ||
conversion_options=conversion_opts, | ||
metadata=metadata, | ||
) | ||
with NWBHDF5IO(path=self.nwbfile_path, mode="r") as io: | ||
nwbfile = io.read() | ||
mod = nwbfile.acquisition | ||
assert movie_interface_name in mod | ||
assert mod[movie_interface_name].starting_time == 0.0 | ||
|
||
def test_movie_custom_module(self): | ||
starting_times = [np.float(np.random.randint(200)) for i in range(len(self.movie_files))] | ||
module_name = "TestModule" | ||
module_description = "This is a test module." | ||
conversion_opts = dict( | ||
Movie=dict( | ||
starting_times=starting_times, | ||
external_mode=False, | ||
module_name=module_name, | ||
module_description=module_description, | ||
) | ||
) | ||
self.nwb_converter.run_conversion( | ||
nwbfile_path=self.nwbfile_path, | ||
overwrite=True, | ||
conversion_options=conversion_opts, | ||
metadata=self.get_metadata(), | ||
) | ||
with NWBHDF5IO(path=self.nwbfile_path, mode="r") as io: | ||
nwbfile = io.read() | ||
assert module_name in nwbfile.processing | ||
assert module_description == nwbfile.processing[module_name].description | ||
|
||
def test_movie_chunking(self): | ||
starting_times = [np.float(np.random.randint(200)) for i in range(len(self.movie_files))] | ||
conv_ops = dict( | ||
Movie=dict(external_mode=False, stub_test=True, starting_times=starting_times, chunk_data=False) | ||
) | ||
self.nwb_converter.run_conversion( | ||
nwbfile_path=self.nwbfile_path, overwrite=True, conversion_options=conv_ops, metadata=self.get_metadata() | ||
) | ||
|
||
with NWBHDF5IO(path=self.nwbfile_path, mode="r") as io: | ||
nwbfile = io.read() | ||
mod = nwbfile.acquisition | ||
metadata = self.nwb_converter.get_metadata() | ||
for no in range(len(metadata["Behavior"]["Movies"])): | ||
movie_interface_name = metadata["Behavior"]["Movies"][no]["name"] | ||
assert mod[movie_interface_name].data.chunks is not None # TODO retrive storage_layout of hdf5 dataset | ||
|
||
def test_movie_external_mode(self): | ||
starting_times = [np.float(np.random.randint(200)) for i in range(len(self.movie_files))] | ||
conversion_opts = dict(Movie=dict(starting_times=starting_times, external_mode=True)) | ||
self.nwb_converter.run_conversion( | ||
nwbfile_path=self.nwbfile_path, | ||
overwrite=True, | ||
conversion_options=conversion_opts, | ||
metadata=self.get_metadata(), | ||
) | ||
with NWBHDF5IO(path=self.nwbfile_path, mode="r") as io: | ||
nwbfile = io.read() | ||
mod = nwbfile.acquisition | ||
metadata = self.nwb_converter.get_metadata() | ||
for no in range(len(metadata["Behavior"]["Movies"])): | ||
movie_interface_name = metadata["Behavior"]["Movies"][no]["name"] | ||
assert mod[movie_interface_name].external_file[0] == str(self.movie_files[no]) | ||
|
||
def test_movie_duplicate_kwargs_external(self): | ||
conversion_opts = dict(Movie=dict(external_mode=True)) | ||
metadata = self.get_metadata() | ||
movie_interface_name = metadata["Behavior"]["Movies"][0]["name"] | ||
for no in range(1, len(self.movie_files)): | ||
metadata["Behavior"]["Movies"][no]["name"] = movie_interface_name | ||
self.nwb_converter.run_conversion( | ||
nwbfile_path=self.nwbfile_path, | ||
overwrite=True, | ||
conversion_options=conversion_opts, | ||
metadata=metadata, | ||
) | ||
with NWBHDF5IO(path=self.nwbfile_path, mode="r") as io: | ||
nwbfile = io.read() | ||
mod = nwbfile.acquisition | ||
assert len(mod) == 1 | ||
assert movie_interface_name in mod | ||
assert len(mod[movie_interface_name].external_file) == len(self.movie_files) | ||
|
||
def test_movie_duplicate_kwargs(self): | ||
conversion_opts = dict(Movie=dict(external_mode=False)) | ||
metadata = self.get_metadata() | ||
movie_interface_name = metadata["Behavior"]["Movies"][0]["name"] | ||
metadata["Behavior"]["Movies"][1]["name"] = movie_interface_name | ||
with self.assertRaises(AssertionError): | ||
self.nwb_converter.run_conversion( | ||
nwbfile_path=self.nwbfile_path, | ||
overwrite=True, | ||
conversion_options=conversion_opts, | ||
metadata=metadata, | ||
) | ||
|
||
def test_movie_stub(self): | ||
starting_times = [np.float(np.random.randint(200)) for i in range(len(self.movie_files))] | ||
conversion_opts = dict(Movie=dict(starting_times=starting_times, external_mode=False, stub_test=True)) | ||
self.nwb_converter.run_conversion( | ||
nwbfile_path=self.nwbfile_path, | ||
overwrite=True, | ||
conversion_options=conversion_opts, | ||
metadata=self.get_metadata(), | ||
) | ||
with NWBHDF5IO(path=self.nwbfile_path, mode="r") as io: | ||
nwbfile = io.read() | ||
mod = nwbfile.acquisition | ||
metadata = self.nwb_converter.get_metadata() | ||
for no in range(len(metadata["Behavior"]["Movies"])): | ||
movie_interface_name = metadata["Behavior"]["Movies"][no]["name"] | ||
assert mod[movie_interface_name].data.shape[0] == 10 | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |