-
Notifications
You must be signed in to change notification settings - Fork 2
/
gen-psqr.c
575 lines (475 loc) · 16.9 KB
/
gen-psqr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/* Generate perfect square testing data.
Copyright 2002, 2003, 2004, 2012 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
#include <stdio.h>
#include <stdlib.h>
#include "bootstrap.c"
/* The aim of this program is to choose either mpn_mod_34lsub1 or mpn_mod_1
(plus a PERFSQR_PP modulus), and generate tables indicating quadratic
residues and non-residues modulo small factors of that modulus.
For the usual 32 or 64 bit cases mpn_mod_34lsub1 gets used. That
function exists specifically because 2^24-1 and 2^48-1 have nice sets of
prime factors. For other limb sizes it's considered, but if it doesn't
have good factors then mpn_mod_1 will be used instead.
When mpn_mod_1 is used, the modulus PERFSQR_PP is created from a
selection of small primes, chosen to fill PERFSQR_MOD_BITS of a limb,
with that bit count chosen so (2*GMP_LIMB_BITS)*2^PERFSQR_MOD_BITS <=
GMP_LIMB_MAX, allowing PERFSQR_MOD_IDX in mpn/generic/perfsqr.c to do its
calculation within a single limb.
In either case primes can be combined to make divisors. The table data
then effectively indicates remainders which are quadratic residues mod
all the primes. This sort of combining reduces the number of steps
needed after mpn_mod_34lsub1 or mpn_mod_1, saving code size and time.
Nothing is gained or lost in terms of detections, the same total fraction
of non-residues will be identified.
Nothing particularly sophisticated is attempted for combining factors to
make divisors. This is probably a kind of knapsack problem so it'd be
too hard to attempt anything completely general. For the usual 32 and 64
bit limbs we get a good enough result just pairing the biggest and
smallest which fit together, repeatedly.
Another aim is to get powerful combinations, ie. divisors which identify
biggest fraction of non-residues, and have those run first. Again for
the usual 32 and 64 bits it seems good enough just to pair for big
divisors then sort according to the resulting fraction of non-residues
identified.
Also in this program, a table sq_res_0x100 of residues modulo 256 is
generated. This simply fills bits into limbs of the appropriate
build-time GMP_LIMB_BITS each.
*/
/* Normally we aren't using const in gen*.c programs, so as not to have to
bother figuring out if it works, but using it with f_cmp_divisor and
f_cmp_fraction avoids warnings from the qsort calls. */
/* Same tests as gmp.h. */
#if defined (__STDC__) \
|| defined (__cplusplus) \
|| defined (_AIX) \
|| defined (__DECC) \
|| (defined (__mips) && defined (_SYSTYPE_SVR4)) \
|| defined (_MSC_VER) \
|| defined (_WIN32)
#define HAVE_CONST 1
#endif
#if ! HAVE_CONST
#define const
#endif
mpz_t *sq_res_0x100; /* table of limbs */
int nsq_res_0x100; /* elements in sq_res_0x100 array */
int sq_res_0x100_num; /* squares in sq_res_0x100 */
double sq_res_0x100_fraction; /* sq_res_0x100_num / 256 */
int mod34_bits; /* 3*GMP_NUMB_BITS/4 */
int mod_bits; /* bits from PERFSQR_MOD_34 or MOD_PP */
int max_divisor; /* all divisors <= max_divisor */
int max_divisor_bits; /* ceil(log2(max_divisor)) */
double total_fraction; /* of squares */
mpz_t pp; /* product of primes, or 0 if mod_34lsub1 used */
mpz_t pp_norm; /* pp shifted so NUMB high bit set */
mpz_t pp_inverted; /* invert_limb style inverse */
mpz_t mod_mask; /* 2^mod_bits-1 */
char mod34_excuse[128]; /* why mod_34lsub1 not used (if it's not) */
/* raw list of divisors of 2^mod34_bits-1 or pp, just to show in a comment */
struct rawfactor_t {
int divisor;
int multiplicity;
};
struct rawfactor_t *rawfactor;
int nrawfactor;
/* factors of 2^mod34_bits-1 or pp and associated data, after combining etc */
struct factor_t {
int divisor;
mpz_t inverse; /* 1/divisor mod 2^mod_bits */
mpz_t mask; /* indicating squares mod divisor */
double fraction; /* squares/total */
};
struct factor_t *factor;
int nfactor; /* entries in use in factor array */
int factor_alloc; /* entries allocated to factor array */
int
f_cmp_divisor (const void *parg, const void *qarg)
{
const struct factor_t *p, *q;
p = parg;
q = qarg;
if (p->divisor > q->divisor)
return 1;
else if (p->divisor < q->divisor)
return -1;
else
return 0;
}
int
f_cmp_fraction (const void *parg, const void *qarg)
{
const struct factor_t *p, *q;
p = parg;
q = qarg;
if (p->fraction > q->fraction)
return 1;
else if (p->fraction < q->fraction)
return -1;
else
return 0;
}
/* Remove array[idx] by copying the remainder down, and adjust narray
accordingly. */
#define COLLAPSE_ELEMENT(array, idx, narray) \
do { \
memmove (&(array)[idx], \
&(array)[idx+1], \
((narray)-((idx)+1)) * sizeof (array[0])); \
(narray)--; \
} while (0)
/* return n*2^p mod m */
int
mul_2exp_mod (int n, int p, int m)
{
int i;
for (i = 0; i < p; i++)
n = (2 * n) % m;
return n;
}
/* return -n mod m */
int
neg_mod (int n, int m)
{
assert (n >= 0 && n < m);
return (n == 0 ? 0 : m-n);
}
/* Set "mask" to a value such that "mask & (1<<idx)" is non-zero if
"-(idx<<mod_bits)" can be a square modulo m. */
void
square_mask (mpz_t mask, int m)
{
int p, i, r, idx;
p = mul_2exp_mod (1, mod_bits, m);
p = neg_mod (p, m);
mpz_set_ui (mask, 0L);
for (i = 0; i < m; i++)
{
r = (i * i) % m;
idx = (r * p) % m;
mpz_setbit (mask, (unsigned long) idx);
}
}
void
generate_sq_res_0x100 (int limb_bits)
{
int i, res;
nsq_res_0x100 = (0x100 + limb_bits - 1) / limb_bits;
sq_res_0x100 = xmalloc (nsq_res_0x100 * sizeof (*sq_res_0x100));
for (i = 0; i < nsq_res_0x100; i++)
mpz_init_set_ui (sq_res_0x100[i], 0L);
for (i = 0; i < 0x100; i++)
{
res = (i * i) % 0x100;
mpz_setbit (sq_res_0x100[res / limb_bits],
(unsigned long) (res % limb_bits));
}
sq_res_0x100_num = 0;
for (i = 0; i < nsq_res_0x100; i++)
sq_res_0x100_num += mpz_popcount (sq_res_0x100[i]);
sq_res_0x100_fraction = (double) sq_res_0x100_num / 256.0;
}
void
generate_mod (int limb_bits, int nail_bits)
{
int numb_bits = limb_bits - nail_bits;
int i, divisor;
mpz_init_set_ui (pp, 0L);
mpz_init_set_ui (pp_norm, 0L);
mpz_init_set_ui (pp_inverted, 0L);
/* no more than limb_bits many factors in a one limb modulus (and of
course in reality nothing like that many) */
factor_alloc = limb_bits;
factor = xmalloc (factor_alloc * sizeof (*factor));
rawfactor = xmalloc (factor_alloc * sizeof (*rawfactor));
if (numb_bits % 4 != 0)
{
strcpy (mod34_excuse, "GMP_NUMB_BITS % 4 != 0");
goto use_pp;
}
max_divisor = 2*limb_bits;
max_divisor_bits = log2_ceil (max_divisor);
if (numb_bits / 4 < max_divisor_bits)
{
/* Wind back to one limb worth of max_divisor, if that will let us use
mpn_mod_34lsub1. */
max_divisor = limb_bits;
max_divisor_bits = log2_ceil (max_divisor);
if (numb_bits / 4 < max_divisor_bits)
{
strcpy (mod34_excuse, "GMP_NUMB_BITS / 4 too small");
goto use_pp;
}
}
{
/* Can use mpn_mod_34lsub1, find small factors of 2^mod34_bits-1. */
mpz_t m, q, r;
int multiplicity;
mod34_bits = (numb_bits / 4) * 3;
/* mpn_mod_34lsub1 returns a full limb value, PERFSQR_MOD_34 folds it at
the mod34_bits mark, adding the two halves for a remainder of at most
mod34_bits+1 many bits */
mod_bits = mod34_bits + 1;
mpz_init_set_ui (m, 1L);
mpz_mul_2exp (m, m, mod34_bits);
mpz_sub_ui (m, m, 1L);
mpz_init (q);
mpz_init (r);
for (i = 3; i <= max_divisor; i++)
{
if (! isprime (i))
continue;
mpz_tdiv_qr_ui (q, r, m, (unsigned long) i);
if (mpz_sgn (r) != 0)
continue;
/* if a repeated prime is found it's used as an i^n in one factor */
divisor = 1;
multiplicity = 0;
do
{
if (divisor > max_divisor / i)
break;
multiplicity++;
mpz_set (m, q);
mpz_tdiv_qr_ui (q, r, m, (unsigned long) i);
}
while (mpz_sgn (r) == 0);
assert (nrawfactor < factor_alloc);
rawfactor[nrawfactor].divisor = i;
rawfactor[nrawfactor].multiplicity = multiplicity;
nrawfactor++;
}
mpz_clear (m);
mpz_clear (q);
mpz_clear (r);
}
if (nrawfactor <= 2)
{
mpz_t new_pp;
sprintf (mod34_excuse, "only %d small factor%s",
nrawfactor, nrawfactor == 1 ? "" : "s");
use_pp:
/* reset to two limbs of max_divisor, in case the mpn_mod_34lsub1 code
tried with just one */
max_divisor = 2*limb_bits;
max_divisor_bits = log2_ceil (max_divisor);
mpz_init (new_pp);
nrawfactor = 0;
mod_bits = MIN (numb_bits, limb_bits - max_divisor_bits);
/* one copy of each small prime */
mpz_set_ui (pp, 1L);
for (i = 3; i <= max_divisor; i++)
{
if (! isprime (i))
continue;
mpz_mul_ui (new_pp, pp, (unsigned long) i);
if (mpz_sizeinbase (new_pp, 2) > mod_bits)
break;
mpz_set (pp, new_pp);
assert (nrawfactor < factor_alloc);
rawfactor[nrawfactor].divisor = i;
rawfactor[nrawfactor].multiplicity = 1;
nrawfactor++;
}
/* Plus an extra copy of one or more of the primes selected, if that
still fits in max_divisor and the total in mod_bits. Usually only
3 or 5 will be candidates */
for (i = nrawfactor-1; i >= 0; i--)
{
if (rawfactor[i].divisor > max_divisor / rawfactor[i].divisor)
continue;
mpz_mul_ui (new_pp, pp, (unsigned long) rawfactor[i].divisor);
if (mpz_sizeinbase (new_pp, 2) > mod_bits)
continue;
mpz_set (pp, new_pp);
rawfactor[i].multiplicity++;
}
mod_bits = mpz_sizeinbase (pp, 2);
mpz_set (pp_norm, pp);
while (mpz_sizeinbase (pp_norm, 2) < numb_bits)
mpz_add (pp_norm, pp_norm, pp_norm);
mpz_preinv_invert (pp_inverted, pp_norm, numb_bits);
mpz_clear (new_pp);
}
/* start the factor array */
for (i = 0; i < nrawfactor; i++)
{
int j;
assert (nfactor < factor_alloc);
factor[nfactor].divisor = 1;
for (j = 0; j < rawfactor[i].multiplicity; j++)
factor[nfactor].divisor *= rawfactor[i].divisor;
nfactor++;
}
combine:
/* Combine entries in the factor array. Combine the smallest entry with
the biggest one that will fit with it (ie. under max_divisor), then
repeat that with the new smallest entry. */
qsort (factor, nfactor, sizeof (factor[0]), f_cmp_divisor);
for (i = nfactor-1; i >= 1; i--)
{
if (factor[i].divisor <= max_divisor / factor[0].divisor)
{
factor[0].divisor *= factor[i].divisor;
COLLAPSE_ELEMENT (factor, i, nfactor);
goto combine;
}
}
total_fraction = 1.0;
for (i = 0; i < nfactor; i++)
{
mpz_init (factor[i].inverse);
mpz_invert_ui_2exp (factor[i].inverse,
(unsigned long) factor[i].divisor,
(unsigned long) mod_bits);
mpz_init (factor[i].mask);
square_mask (factor[i].mask, factor[i].divisor);
/* fraction of possible squares */
factor[i].fraction = (double) mpz_popcount (factor[i].mask)
/ factor[i].divisor;
/* total fraction of possible squares */
total_fraction *= factor[i].fraction;
}
/* best tests first (ie. smallest fraction) */
qsort (factor, nfactor, sizeof (factor[0]), f_cmp_fraction);
}
void
print (int limb_bits, int nail_bits)
{
int i;
mpz_t mhi, mlo;
printf ("/* This file generated by gen-psqr.c - DO NOT EDIT. */\n");
printf ("\n");
printf ("#if GMP_LIMB_BITS != %d || GMP_NAIL_BITS != %d\n",
limb_bits, nail_bits);
printf ("Error, error, this data is for %d bit limb and %d bit nail\n",
limb_bits, nail_bits);
printf ("#endif\n");
printf ("\n");
printf ("/* Non-zero bit indicates a quadratic residue mod 0x100.\n");
printf (" This test identifies %.2f%% as non-squares (%d/256). */\n",
(1.0 - sq_res_0x100_fraction) * 100.0,
0x100 - sq_res_0x100_num);
printf ("static const mp_limb_t\n");
printf ("sq_res_0x100[%d] = {\n", nsq_res_0x100);
for (i = 0; i < nsq_res_0x100; i++)
{
printf (" CNST_LIMB(0x");
mpz_out_str (stdout, 16, sq_res_0x100[i]);
printf ("),\n");
}
printf ("};\n");
printf ("\n");
if (mpz_sgn (pp) != 0)
{
printf ("/* mpn_mod_34lsub1 not used due to %s */\n", mod34_excuse);
printf ("/* PERFSQR_PP = ");
}
else
printf ("/* 2^%d-1 = ", mod34_bits);
for (i = 0; i < nrawfactor; i++)
{
if (i != 0)
printf (" * ");
printf ("%d", rawfactor[i].divisor);
if (rawfactor[i].multiplicity != 1)
printf ("^%d", rawfactor[i].multiplicity);
}
printf (" %s*/\n", mpz_sgn (pp) == 0 ? "... " : "");
printf ("#define PERFSQR_MOD_BITS %d\n", mod_bits);
if (mpz_sgn (pp) != 0)
{
printf ("#define PERFSQR_PP CNST_LIMB(0x");
mpz_out_str (stdout, 16, pp);
printf (")\n");
printf ("#define PERFSQR_PP_NORM CNST_LIMB(0x");
mpz_out_str (stdout, 16, pp_norm);
printf (")\n");
printf ("#define PERFSQR_PP_INVERTED CNST_LIMB(0x");
mpz_out_str (stdout, 16, pp_inverted);
printf (")\n");
}
printf ("\n");
mpz_init (mhi);
mpz_init (mlo);
printf ("/* This test identifies %.2f%% as non-squares. */\n",
(1.0 - total_fraction) * 100.0);
printf ("#define PERFSQR_MOD_TEST(up, usize) \\\n");
printf (" do { \\\n");
printf (" mp_limb_t r; \\\n");
if (mpz_sgn (pp) != 0)
printf (" PERFSQR_MOD_PP (r, up, usize); \\\n");
else
printf (" PERFSQR_MOD_34 (r, up, usize); \\\n");
for (i = 0; i < nfactor; i++)
{
printf (" \\\n");
printf (" /* %5.2f%% */ \\\n",
(1.0 - factor[i].fraction) * 100.0);
printf (" PERFSQR_MOD_%d (r, CNST_LIMB(%2d), CNST_LIMB(0x",
factor[i].divisor <= limb_bits ? 1 : 2,
factor[i].divisor);
mpz_out_str (stdout, 16, factor[i].inverse);
printf ("), \\\n");
printf (" CNST_LIMB(0x");
if ( factor[i].divisor <= limb_bits)
{
mpz_out_str (stdout, 16, factor[i].mask);
}
else
{
mpz_tdiv_r_2exp (mlo, factor[i].mask, (unsigned long) limb_bits);
mpz_tdiv_q_2exp (mhi, factor[i].mask, (unsigned long) limb_bits);
mpz_out_str (stdout, 16, mhi);
printf ("), CNST_LIMB(0x");
mpz_out_str (stdout, 16, mlo);
}
printf (")); \\\n");
}
printf (" } while (0)\n");
printf ("\n");
printf ("/* Grand total sq_res_0x100 and PERFSQR_MOD_TEST, %.2f%% non-squares. */\n",
(1.0 - (total_fraction * 44.0/256.0)) * 100.0);
printf ("\n");
printf ("/* helper for tests/mpz/t-perfsqr.c */\n");
printf ("#define PERFSQR_DIVISORS { 256,");
for (i = 0; i < nfactor; i++)
printf (" %d,", factor[i].divisor);
printf (" }\n");
mpz_clear (mhi);
mpz_clear (mlo);
}
int
main (int argc, char *argv[])
{
int limb_bits, nail_bits;
if (argc != 3)
{
fprintf (stderr, "Usage: gen-psqr <limbbits> <nailbits>\n");
exit (1);
}
limb_bits = atoi (argv[1]);
nail_bits = atoi (argv[2]);
if (limb_bits <= 0
|| nail_bits < 0
|| nail_bits >= limb_bits)
{
fprintf (stderr, "Invalid limb/nail bits: %d %d\n",
limb_bits, nail_bits);
exit (1);
}
generate_sq_res_0x100 (limb_bits);
generate_mod (limb_bits, nail_bits);
print (limb_bits, nail_bits);
return 0;
}