-
Notifications
You must be signed in to change notification settings - Fork 139
/
train_fullts.py
executable file
·153 lines (129 loc) · 7.17 KB
/
train_fullts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
### Copyright (C) 2017 NVIDIA Corporation. All rights reserved.
### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
import time
from collections import OrderedDict
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model_fullts
import util.util as util
from util.visualizer import Visualizer
import os
import numpy as np
import torch
from torch.autograd import Variable
opt = TrainOptions().parse()
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
if opt.continue_train:
try:
start_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int)
except:
start_epoch, epoch_iter = 1, 0
print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter))
else:
start_epoch, epoch_iter = 1, 0
if opt.debug:
opt.display_freq = 1
opt.print_freq = 1
opt.niter = 1
opt.niter_decay = 0
opt.max_dataset_size = 10
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
""" new residual model """
model = create_model_fullts(opt)
visualizer = Visualizer(opt)
total_steps = (start_epoch-1) * dataset_size + epoch_iter
for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
if epoch != start_epoch:
epoch_iter = epoch_iter % dataset_size
for i, data in enumerate(dataset, start=epoch_iter):
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
# whether to collect output images
save_fake = total_steps % opt.display_freq == 0
############## Forward Pass ######################
no_nexts = data['next_label'].dim() > 1 #check if has a next label (last training pair does not have a next label)
if no_nexts:
cond_zeros = torch.zeros(data['label'].size()).float()
losses, generated = model(Variable(data['label']), Variable(data['next_label']), Variable(data['image']), \
Variable(data['next_image']), Variable(data['face_coords']), Variable(cond_zeros), infer=True)
# sum per device losses
losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ]
loss_dict = dict(zip(model.module.loss_names, losses))
# calculate final loss scalar
loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5 + (loss_dict['D_realface'] + loss_dict['D_fakeface']) * 0.5
loss_G = loss_dict['G_GAN'] + loss_dict['G_GAN_Feat'] + loss_dict['G_VGG'] + loss_dict['G_GANface']
############### Backward Pass ####################
# update generator weights
model.module.optimizer_G.zero_grad()
loss_G.backward()
model.module.optimizer_G.step()
# update discriminator weights
model.module.optimizer_D.zero_grad()
loss_D.backward()
model.module.optimizer_D.step()
#call(["nvidia-smi", "--format=csv", "--query-gpu=memory.used,memory.free"])
############## Display results and errors ##########
### print out errors
if total_steps % opt.print_freq == 0:
errors = {}
if torch.__version__[0] == '1':
errors = {k: v.item() if not isinstance(v, int) else v for k, v in loss_dict.items()}
else:
errors = {k: v.data[0] if not isinstance(v, int) else v for k, v in loss_dict.items()}
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
visualizer.plot_current_errors(errors, total_steps)
### display output images
if save_fake:
syn = generated[0].data[0]
inputs = torch.cat((data['label'], data['next_label']), dim=3)
targets = torch.cat((data['image'], data['next_image']), dim=3)
visuals = OrderedDict([('input_label', util.tensor2im(inputs[0], normalize=False)),
('synthesized_image', util.tensor2im(syn)),
('real_image', util.tensor2im(targets[0]))])
if opt.face_generator: #display face generator on tensorboard
miny, maxy, minx, maxx = data['face_coords'][0]
res_face = generated[2].data[0]
syn_face = generated[1].data[0]
preres = generated[3].data[0]
visuals = OrderedDict([('input_label', util.tensor2im(inputs[0], normalize=False)),
('synthesized_image', util.tensor2im(syn)),
('synthesized_face', util.tensor2im(syn_face)),
('residual', util.tensor2im(res_face)),
('real_face', util.tensor2im(data['image'][0][:, miny:maxy, minx:maxx])),
# ('pre_residual', util.tensor2im(preres)),
# ('pre_residual_face', util.tensor2im(preres[:, miny:maxy, minx:maxx])),
('input_face', util.tensor2im(data['label'][0][:, miny:maxy, minx:maxx], normalize=False)),
('real_image', util.tensor2im(targets[0]))])
visualizer.display_current_results(visuals, epoch, total_steps)
### save latest model
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps))
model.module.save('latest')
np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d')
# end of epoch
iter_end_time = time.time()
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
### save model for this epoch
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
model.module.save('latest')
model.module.save(epoch)
np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d')
### instead of only training the local enhancer, train the entire network after certain iterations
if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global):
print('------------- finetuning Local + Global generators jointly -------------')
model.module.update_fixed_params()
### instead of only training the face discriminator, train the entire network after certain iterations
if (opt.niter_fix_main != 0) and (epoch == opt.niter_fix_main):
print('------------- traing all the discriminators now and not just the face -------------')
model.module.update_fixed_params_netD()
### linearly decay learning rate after certain iterations
if epoch > opt.niter:
model.module.update_learning_rate()