forked from graphcore/ogb-lsc-pcqm4mv2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
notebook_utils.py
319 lines (280 loc) · 15.8 KB
/
notebook_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Copyright (c) 2022 Graphcore Ltd. All rights reserved.
import logging
import math
import os
import random
import shutil
import string
import tempfile
from datetime import datetime
from pathlib import Path
import tensorflow as tf
from tensorflow.python.ipu import optimizers
import wandb
import utils
import xpu
from custom_callbacks import CheckpointCallback
from data_utils.input_spec import create_inputs_from_features
from model.utils import (create_model, get_loss_functions, get_metrics, get_tf_dataset)
from pipeline.pipeline_stage_assignment import pipeline_model
from pipeline.pipeline_stage_names import (PIPELINE_ALLOCATE_PREVIOUS, PIPELINE_NAMES)
from utils import (ThroughputCallback, convert_loss_and_metric_reductions_to_fp32, get_optimizer, str_dtype_to_tf_dtype, set_random_seeds)
def predict(preprocessed_dataset, checkpoint_path, fold, cfg):
"""
Function to run inference and give predictions of molecule samples.
Args:
preprocessed_dataset: dataset object, preprocessed dataset with all the features needed for inference.
checkpoint_path: string, path to the checkpoint.
fold: string, name of the fold, choose from ["valid", "test-dev" and "test-challenge"].
cfg: config object, configurations of the model and inference.
"""
set_random_seeds()
tf.keras.mixed_precision.set_global_policy(cfg.model.dtype)
print("Creating input specification...")
input_spec = create_inputs_from_features(dataset=preprocessed_dataset, cfg=cfg, fold="test-dev")
losses, loss_weights = get_loss_functions(preprocessed_dataset, cfg)
metrics = get_metrics(preprocessed_dataset.denormalize, cfg)
optimizer_options = dict(
name=cfg.model.opt.lower(),
learning_rate=cfg.model.lr,
l2_regularization=cfg.model.l2_regularization,
dtype=str_dtype_to_tf_dtype(cfg.model.dtype),
m_dtype=str_dtype_to_tf_dtype(cfg.model.adam_m_dtype),
v_dtype=str_dtype_to_tf_dtype(cfg.model.adam_v_dtype),
clip_value=cfg.model.grad_clip_value,
loss_scale=cfg.model.loss_scaling,
gradient_accumulation_factor=cfg.ipu_opts.gradient_accumulation_factor,
replicas=cfg.ipu_opts.replicas,
outline_apply_gradients=not cfg.ipu_opts.offload_optimizer_state, # bug where outlining causes issues
)
print("Configuring the IPUs...")
strategy = xpu.configure_and_get_strategy(num_replicas=1,
num_ipus_per_replica=1,
stochastic_rounding=False,
cfg=cfg)
with strategy.scope():
print("Creating TensorFlow dataset from preprocessed dataset...")
batch_generator, ground_truth_and_masks = get_tf_dataset(preprocessed_dataset=preprocessed_dataset,
split_name=fold,
shuffle=False,
options=cfg,
input_spec=input_spec)
ds = batch_generator.get_tf_dataset()
ground_truth, include_mask = ground_truth_and_masks
ground_truth = ground_truth[include_mask]
print("Constructing the model...")
model = create_model(batch_generator, preprocessed_dataset, cfg, input_spec=input_spec)
model.compile(optimizer=get_optimizer(**optimizer_options),
loss=losses,
loss_weights=loss_weights,
weighted_metrics=metrics,
steps_per_execution=batch_generator.batches_per_epoch)
if cfg.model.dtype == 'float16':
# the loss reduction is set by backend.floatx by default
# must be forced to reduce in float32 to avoid overflow
convert_loss_and_metric_reductions_to_fp32(model)
if checkpoint_path is not None:
print(f"Loading the checkpoint from {checkpoint_path}...")
model.load_weights(checkpoint_path).expect_partial()
print(f"Running `model.predict` to generate predictions...")
prediction = model.predict(ds, steps=batch_generator.batches_per_epoch)
if isinstance(prediction, list) and len(prediction) > 1:
prediction = prediction[0]
prediction = prediction.squeeze()
prediction = preprocessed_dataset.denormalize(prediction)
if len(include_mask) > len(prediction):
include_mask = include_mask[:len(prediction)]
ground_truth = ground_truth[:len(prediction)]
if len(include_mask) > 1:
include_mask = include_mask.squeeze()
prediction = prediction[:len(include_mask)][include_mask == 1]
return prediction, ground_truth
def train(preprocessed_dataset, cfg):
"""
Utility function to run training on the PCQM4Mv2 dataset from notebook example
Args:
preprocessed_dataset: dataset object, preprocessed dataset with all the features needed for inference.
cfg: config object, configurations of the model and inference.
"""
def cosine_lr(epoch, lr):
completed_fraction = epoch / cfg.model.epochs
cosine = tf.cos(tf.constant(math.pi, dtype=tf.float32) * completed_fraction)
cosine_decayed = 0.5 * (1.0 + cosine)
lr = max(cosine_decayed * cfg.model.lr, cfg.model.min_lr)
if cfg.model.lr_warmup_epochs > 0 and epoch < cfg.model.lr_warmup_epochs:
init_prop = cfg.model.lr_init_prop
w_ep = cfg.model.lr_warmup_epochs
lr_scale = (init_prop * (w_ep - epoch) / w_ep) + (epoch / w_ep)
lr *= lr_scale
return lr
def linear_lr(epoch, lr):
warmup = cfg.model.lr_warmup_epochs
if warmup > 0 and epoch < warmup:
lr = epoch * cfg.model.lr / warmup
else:
p = (epoch - warmup) / (cfg.model.epochs - warmup)
lr = p * cfg.model.min_lr + (1 - p) * cfg.model.lr
return lr
set_random_seeds()
tf.keras.mixed_precision.set_global_policy(cfg.model.dtype)
# ------------ CHECKPOINTS ---------------
# Create a directory for the checkpoints based on model name and time
# Want to check directory exisits before lengthy data processing
if cfg.save_checkpoints_locally:
if not Path(cfg.checkpoint_dir).is_dir():
os.mkdir(Path(cfg.checkpoint_dir))
assert Path(cfg.checkpoint_dir).is_dir()
date_string = 'model-' + datetime.now().strftime("%d-%m-%Y_%H-%M-%S") + "-" + \
''.join(random.choice(string.ascii_lowercase) for _ in range(10))
model_dir = os.path.join(cfg.checkpoint_dir, date_string)
else:
# If no checkpoint specified temp path is given
model_dir = tempfile.mkdtemp()
logging.info(f"Model weights will be saved to {model_dir}")
graph_data = preprocessed_dataset
input_spec = create_inputs_from_features(dataset=graph_data, cfg=cfg, fold="train")
batch_generator, _ = get_tf_dataset(preprocessed_dataset=graph_data,
split_name="train",
shuffle=True,
options=cfg,
input_spec=input_spec)
if cfg.model.target_total_batch_size:
if cfg.model.micro_batch_size and (not cfg.ipu_opts.gradient_accumulation_factor):
fixed_batch_size = float(cfg.model.micro_batch_size) * \
float(cfg.ipu_opts.replicas) * \
batch_generator.stats['avg_pack']['graphs']
new_GA = max(int(round(cfg.model.target_total_batch_size / fixed_batch_size)), 1)
logging.info(f"Setting gradient_accumulation_factor to {new_GA}")
cfg.ipu_opts.gradient_accumulation_factor = new_GA
else:
fixed_batch_size = float(cfg.ipu_opts.gradient_accumulation_factor) * \
float(cfg.ipu_opts.replicas) * \
batch_generator.stats['avg_pack']['graphs']
new_micro_batch_size = int(round(cfg.model.target_total_batch_size / fixed_batch_size))
new_micro_batch_size = max(new_micro_batch_size, 1)
logging.info(f"Changing micro_batch_size from {cfg.model.micro_batch_size} to {new_micro_batch_size}")
cfg.model.micro_batch_size = new_micro_batch_size
batch_generator.change_micro_batch_size(cfg.model.micro_batch_size)
batch_generator.get_averaged_global_batch_size(cfg.model.micro_batch_size,
cfg.ipu_opts.gradient_accumulation_factor, cfg.ipu_opts.replicas)
logging.info(f"Dataset stats: {batch_generator.stats}")
if cfg.ipu_opts.num_pipeline_stages > 1:
round_to = float(2 * cfg.ipu_opts.num_pipeline_stages)
new_GA = int(max(round(cfg.ipu_opts.gradient_accumulation_factor / round_to), 1) * round_to)
if new_GA != cfg.ipu_opts.gradient_accumulation_factor:
logging.info(f"Rounding gradient_accumulation_factor to a multiple of {round_to}: {new_GA}")
cfg.ipu_opts.gradient_accumulation_factor = new_GA
batch_generator.get_averaged_global_batch_size(
cfg.model.micro_batch_size, cfg.ipu_opts.gradient_accumulation_factor, cfg.ipu_opts.replicas)
logging.info(f"Dataset stats: {batch_generator.stats}")
if cfg.wandb:
try:
wandb.log({'dataset_stats': batch_generator.stats})
except AttributeError:
logging.info(f"Batch generator {batch_generator} has no stats object.")
tf_dataset = batch_generator.get_tf_dataset()
steps_per_epoch = batch_generator.batches_per_epoch
steps_per_execution_per_replica = steps_per_epoch // cfg.ipu_opts.replicas
steps_per_execution_per_replica = cfg.ipu_opts.gradient_accumulation_factor * (
steps_per_execution_per_replica // cfg.ipu_opts.gradient_accumulation_factor)
new_steps_per_epoch = steps_per_execution_per_replica * cfg.ipu_opts.replicas
if new_steps_per_epoch != steps_per_epoch:
logging.warning("Steps per epoch has been truncated from"
f" {steps_per_epoch} to {new_steps_per_epoch}"
" in order for it to be divisible by steps per execution.")
steps_per_epoch = new_steps_per_epoch
logging.info(f"Steps per epoch: {steps_per_epoch}")
logging.info(f"Steps per execution per replica: {steps_per_execution_per_replica}")
optimizer_options = dict(
name=cfg.model.opt.lower(),
learning_rate=cfg.model.lr,
l2_regularization=cfg.model.l2_regularization,
dtype=str_dtype_to_tf_dtype(cfg.model.dtype),
m_dtype=str_dtype_to_tf_dtype(cfg.model.adam_m_dtype),
v_dtype=str_dtype_to_tf_dtype(cfg.model.adam_v_dtype),
clip_value=cfg.model.grad_clip_value,
loss_scale=cfg.model.loss_scaling,
gradient_accumulation_factor=cfg.ipu_opts.gradient_accumulation_factor,
replicas=cfg.ipu_opts.replicas,
outline_apply_gradients=not cfg.ipu_opts.offload_optimizer_state,
)
# ------------ TRAINING LOOP ---------------
if cfg.do_training:
num_pipeline_stages_training = cfg.ipu_opts.num_pipeline_stages
strategy_training = xpu.configure_and_get_strategy(num_replicas=cfg.ipu_opts.replicas,
num_ipus_per_replica=num_pipeline_stages_training,
cfg=cfg)
with strategy_training.scope():
model = create_model(batch_generator, graph_data, cfg, input_spec=input_spec)
model.summary()
utils.print_trainable_variables(model, log_wandb=cfg.wandb)
if num_pipeline_stages_training > 1:
pipeline_model(model=model,
config=cfg,
pipeline_names=PIPELINE_NAMES,
pipeline_allocate_previous=PIPELINE_ALLOCATE_PREVIOUS,
num_pipeline_stages=num_pipeline_stages_training,
matmul_partials_type='half')
losses, loss_weights = get_loss_functions(graph_data, cfg)
metrics = get_metrics(graph_data.denormalize, cfg)
callbacks = [
ThroughputCallback(
# the throughput depends on the COMPUTE batch size, not the TOTAL batch size
samples_per_epoch=batch_generator.n_graphs_per_epoch,
log_wandb=cfg.wandb)
]
if cfg.model.learning_rate_schedule == 'cosine':
callbacks.append(tf.keras.callbacks.LearningRateScheduler(cosine_lr))
elif cfg.model.learning_rate_schedule == 'linear':
callbacks.append(tf.keras.callbacks.LearningRateScheduler(linear_lr))
if cfg.execution_profile:
callbacks.append(tf.keras.callbacks.TensorBoard(profile_batch=[2], log_dir='logs'))
logging.info("Running training...")
logging.info(f"Saving weights to {model_dir}")
model_path = os.path.join(model_dir, 'model-{epoch:05d}')
callbacks.append(
CheckpointCallback(use_wandb=cfg.wandb,
upload_to_wandb=cfg.upload_final_ckpt,
save_checkpoints_locally=cfg.save_checkpoints_locally,
filepath=model_path,
verbose=1,
save_best_only=False,
save_weights_only=True,
period=cfg.checkpoint_every_n_epochs,
total_epochs=cfg.model.epochs,
model_name='model'))
model.compile(optimizer=get_optimizer(**optimizer_options),
loss=losses,
loss_weights=loss_weights,
weighted_metrics=metrics,
steps_per_execution=steps_per_execution_per_replica)
if cfg.model.dtype == 'float16':
# the loss reduction is set by backend.floatx by default
# must be forced to reduce in float32 to avoid overflow
convert_loss_and_metric_reductions_to_fp32(model)
# if the total batch size exceeds the compute batch size
if xpu.IS_IPU:
model.set_gradient_accumulation_options(
gradient_accumulation_steps_per_replica=cfg.ipu_opts.gradient_accumulation_factor,
gradient_accumulation_reduction_method=optimizers.GradientAccumulationReductionMethod.RUNNING_MEAN,
dtype=str_dtype_to_tf_dtype(cfg.ipu_opts.gradient_accumulation_dtype or cfg.model.dtype),
offload_weight_update_variables=cfg.ipu_opts.offload_optimizer_state,
replicated_optimizer_state_sharding=cfg.ipu_opts.RTS)
model.fit(tf_dataset,
steps_per_epoch=steps_per_epoch,
epochs=cfg.model.epochs,
callbacks=callbacks,
verbose=1)
if cfg.checkpoint_path:
checkpoint_paths = {-1: cfg.checkpoint_path}
else:
checkpoint_paths = {
epoch: os.path.join(model_dir, f"model-{epoch:05d}")
for epoch in range(1, cfg.model.epochs + 1, cfg.validate_every_n_epochs)
}
# Add the final checkpoint - catches final epoch != % checkpoint frequency
# This will be removed if it doesn't exist.
checkpoint_paths["FINAL"] = os.path.join(model_dir, "model-FINAL")
# Filter the checkpoints for only checkpoints that exist
checkpoint_paths = {e: p for e, p in checkpoint_paths.items() if os.path.exists(p + ".index")}
return checkpoint_paths