-
Notifications
You must be signed in to change notification settings - Fork 0
/
notes.txt
23 lines (18 loc) · 973 Bytes
/
notes.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
train a model:
sketch_rnn_train --log_root=training_logs --data_dir=datasets/<datasetName> --hparams="data_set=[dataset_filename.npz]"
pip install from requirements text file:
pip install -r /path/to/requirements.txt
output current pip dependencies to requirements file:
pip freeze > requirements.txt
create a virtual environment file:
python3 -m venv <folder_name>
Start the server:
python3 server.py or
flask run --port <port_to_run_on>
CuDNNLSTM will likely raise some issues if you try to train the sketch_rnn locally with accelerate_LSTM set to True.
It should be fine on CSUA though.
DOCKER:
docker build -t image_name directory <- run this in the same directory as the Dockerfile
docker run -p host_port:forwards_to_docker_port docker-container
mounting: these do not change the image. Still need to rebuild before deploying
docker run -p host_port:forwards_to_docker_port -v /full_path_to_folder_volume:container_directory_to_mount docker-container