-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodels.py
59 lines (46 loc) · 1.82 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import functools
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import segmentation_models_pytorch as smp
import seg_hrnet
import utils
class FCN(nn.Module):
def __init__(self, num_input_channels, num_output_classes, num_filters=64):
super(FCN,self).__init__()
self.conv1 = nn.Conv2d(num_input_channels, num_filters, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1)
self.conv5 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1)
self.last = nn.Conv2d(num_filters, num_output_classes, kernel_size=1, stride=1, padding=0)
def forward(self,inputs):
x = F.relu(self.conv1(inputs))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = F.relu(self.conv5(x))
x = self.last(x)
return x
def get_unet():
return smp.Unet(
encoder_name='resnet18', encoder_depth=3, encoder_weights=None,
decoder_channels=(128, 64, 64), in_channels=4, classes=len(utils.NLCD_CLASSES)
)
def get_fcn():
return FCN(num_input_channels=4, num_output_classes=len(utils.NLCD_CLASSES), num_filters=64)
def get_hrnet():
config = {
"DATASET": {
"NUM_CLASSES": len(utils.NLCD_CLASSES)
},
"MODEL": {
"EXTRA": {
"FINAL_CONV_KERNEL": 1,
"NUM_INPUT_CHANNELS": 4
}
}
}
config["MODEL"]["EXTRA"].update(seg_hrnet.cfg_cls["hrnet_w32"])
return seg_hrnet.HighResolutionNet(config)