forked from zaki1003/YOLO-CROWD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
289 lines (254 loc) · 10.8 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import argparse
import time
from pathlib import Path
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from models.experimental import attempt_load
from numpy import random
from utils.datasets import LoadImages, LoadStreams
from utils.general import (apply_classifier, check_img_size, check_imshow,
check_requirements, increment_path,
non_max_suppression, scale_coords, set_logging,
strip_optimizer, xyxy2xywh)
from utils.plots import plot_one_box
from utils.torch_utils import load_classifier, select_device, time_synchronized
def resize_numpy_image(img, expected_height, expected_width, device):
"""
Resize a NumPy image to the expected height and width if necessary,
and return the image as a PyTorch tensor.
"""
# Check if the image is in (H, W, C) format
if img.shape[0] == 3: # If it's in (C, H, W), convert to (H, W, C)
img = img.transpose(1, 2, 0)
# Check if resizing is necessary
if img.shape[0] != expected_height or img.shape[1] != expected_width:
print(
f"Resizing image from {img.shape} to ({expected_height}, {expected_width})"
)
img_resized_np = cv2.resize(img, (expected_width, expected_height))
else:
img_resized_np = img # Use original image if resizing is not needed
# Convert the resized NumPy array back to a PyTorch tensor (C, H, W) and move to the specified device
img_resized = (
torch.from_numpy(img_resized_np).permute(2, 0, 1).unsqueeze(0).to(device)
)
return img_resized
def detect(save_img=False):
source, weights, view_img, save_txt, imgsz = (
opt.source,
opt.weights,
opt.view_img,
opt.save_txt,
opt.img_size,
)
save_img = not opt.nosave and not source.endswith(".txt") # save inference images
webcam = (
source.isnumeric()
or source.endswith(".txt")
or source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
)
# Directories
save_dir = Path(
increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)
) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(
parents=True, exist_ok=True
) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != "cpu" # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name="resnet101", n=2) # initialize
modelc.load_state_dict(
torch.load("weights/resnet101.pt", map_location=device)["model"]
).to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, "module") else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
if device.type != "cpu":
model(
torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))
) # run once
t0 = time.time()
number_list = []
for path, img, im0s, vid_cap in dataset:
# Check the image size
print("Image size:", img.shape)
print("im0s size:", im0s.shape)
# Resize the image if necessary
img = resize_numpy_image(img, imgsz, imgsz, device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(
pred,
opt.conf_thres,
opt.iou_thres,
classes=opt.classes,
agnostic=opt.agnostic_nms,
)
t2 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], "%g: " % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, "", im0s, getattr(dataset, "frame", 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / "labels" / p.stem) + (
"" if dataset.mode == "image" else f"_{frame}"
) # img.txt
s += "%gx%g " % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
# Process the detected objects and draw bounding boxes and labels on the image
for *xyxy, conf, cls in reversed(det): # Loop through detections
# Draw bounding box
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
# Optional: Draw custom text like the number of people detected
if torch.is_tensor(n):
prediction = n.item() # Convert tensor to Python number if needed
else:
prediction = n
cv2.putText(im0, 'Number of people=' + str(prediction), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# Print time (inference + NMS)
print(f'{s}Done. ({t2 - t1:.3f}s)')
if torch.is_tensor(n):
prediction = n.item()
else:
prediction = n
cv2.putText(im0, 'Number of people=' + str(prediction), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
number_list.append(prediction)
# Stream results
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == "image":
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += ".mp4"
vid_writer = cv2.VideoWriter(
save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)
)
vid_writer.write(im0)
# Save the average number of people detected to a text file
with open(save_dir / "average_number.txt", "w") as f:
f.write(f"{sum(number_list) / len(number_list)}")
f.write("\n")
f.write(f"{number_list}")
if save_txt or save_img:
s = (
f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to"
f" {save_dir / 'labels'}"
if save_txt
else ""
)
print(f"Results saved to {save_dir}{s}")
print(f"Done. ({time.time() - t0:.3f}s)")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--weights", nargs="+", type=str, default="yolov5s.pt", help="model.pt path(s)"
)
parser.add_argument(
"--source", type=str, default="data/images", help="source"
) # file/folder, 0 for webcam
parser.add_argument(
"--img-size", type=int, default=640, help="inference size (pixels)"
)
parser.add_argument(
"--conf-thres", type=float, default=0.25, help="object confidence threshold"
)
parser.add_argument(
"--iou-thres", type=float, default=0.45, help="IOU threshold for NMS"
)
parser.add_argument(
"--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
)
parser.add_argument("--view-img", action="store_true", help="display results")
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
parser.add_argument(
"--save-conf", action="store_true", help="save confidences in --save-txt labels"
)
parser.add_argument(
"--nosave", action="store_true", help="do not save images/videos"
)
parser.add_argument(
"--classes",
nargs="+",
type=int,
help="filter by class: --class 0, or --class 0 2 3",
)
parser.add_argument(
"--agnostic-nms", action="store_true", help="class-agnostic NMS"
)
parser.add_argument("--augment", action="store_true", help="augmented inference")
parser.add_argument("--update", action="store_true", help="update all models")
parser.add_argument(
"--project", default="runs/detect", help="save results to project/name"
)
parser.add_argument("--name", default="exp", help="save results to project/name")
parser.add_argument(
"--exist-ok",
action="store_true",
help="existing project/name ok, do not increment",
)
opt = parser.parse_args()
print(opt)
check_requirements(exclude=("pycocotools", "thop"))
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ["yolov5s.pt", "yolov5m.pt", "yolov5l.pt", "yolov5x.pt"]:
detect()
strip_optimizer(opt.weights)
else:
detect()