forked from XuyangBai/PPF-FoldNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
143 lines (122 loc) · 5.27 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import torch.optim as optim
import time, os
import numpy as np
from tensorboardX import SummaryWriter
class Trainer(object):
def __init__(self, args):
# parameters
self.epoch = args.epoch
self.num_points_per_patch = args.num_points_per_patch
self.batch_size = args.batch_size
self.dataset = args.dataset
if self.dataset == 'shapenet':
self.data_dir = os.path.join(args.data_dir, 'shapenetcore_partanno_segmentation_benchmark_v0')
self.save_dir = args.save_dir
self.result_dir = args.result_dir
self.gpu_mode = args.gpu_mode
self.verbose = args.verbose
self.model = args.model
self.optimizer = args.optimizer
self.scheduler = args.scheduler
self.scheduler_interval = args.scheduler_interval
self.snapshot_interval = args.snapshot_interval
self.evaluate_interval = args.evaluate_interval
self.evaluate_metric = args.evaluate_metric
self.writer = SummaryWriter(log_dir=args.tboard_dir)
self.train_loader = args.train_loader
self.test_loader = args.test_loader
if self.gpu_mode:
self.model = self.model.cuda()
if args.pretrain != '':
self._load_pretrain(args.pretrain)
def train(self):
self.train_hist = {
'loss': [],
'per_epoch_time': [],
'total_time': []
}
best_loss = 1000000000
print('training start!!')
start_time = time.time()
self.model.train()
res = self.evaluate(0)
print(f'Evaluation: Epoch 0: Loss {res["loss"]}')
for epoch in range(self.epoch):
self.train_epoch(epoch)
if (epoch + 1) % self.evaluate_interval == 0 or epoch == 0:
res = self.evaluate(epoch + 1)
print(f'Evaluation: Epoch {epoch+1}: Loss {res["loss"]}')
if res['loss'] < best_loss:
best_loss = res['loss']
self._snapshot('best')
if self.writer:
self.writer.add_scalar('Loss', res['loss'], epoch)
if epoch % self.scheduler_interval == 0:
self.scheduler.step()
if (epoch + 1) % self.snapshot_interval == 0:
self._snapshot(epoch + 1)
if self.writer:
self.writer.add_scalar('Learning Rate', self._get_lr(), epoch)
self.writer.add_scalar('Train Loss', self.train_hist['loss'][-1], epoch)
# finish all epoch
self.train_hist['total_time'].append(time.time() - start_time)
print("Avg one epoch time: %.2f, total %d epochs time: %.2f" % (np.mean(self.train_hist['per_epoch_time']),
self.epoch, self.train_hist['total_time'][0]))
print("Training finish!... save training results")
def train_epoch(self, epoch):
epoch_start_time = time.time()
loss_buf = []
num_batch = int(len(self.train_loader.dataset) / self.batch_size)
for iter, (patches, ids) in enumerate(self.train_loader):
patches = patches.reshape([-1, patches.shape[2], patches.shape[3]])
if self.gpu_mode:
patches = patches.cuda()
# forward
self.optimizer.zero_grad()
output = self.model(patches)
loss = self.evaluate_metric(patches, output)
# backward
loss.backward()
self.optimizer.step()
# loss_buf.append(loss.detach().cpu().numpy())
loss_buf.append(float(loss))
if (iter + 1) % 100 == 0 and self.verbose:
iter_time = time.time() - epoch_start_time
print(f"Epoch: {epoch+1} [{iter+1:4d}/{num_batch}] loss: {loss:.2f} time: {iter_time:.2f}s")
del loss
del patches
# finish one epoch
epoch_time = time.time() - epoch_start_time
self.train_hist['per_epoch_time'].append(epoch_time)
self.train_hist['loss'].append(np.mean(loss_buf))
print(f'Epoch {epoch+1}: Loss {np.mean(loss_buf)}, time {epoch_time:.4f}s')
del loss_buf
def evaluate(self, epoch):
self.model.eval()
loss_buf = []
for iter, (patches, ids) in enumerate(self.test_loader):
patches = patches.reshape([-1, patches.shape[2], patches.shape[3]])
if self.gpu_mode:
patches = patches.cuda()
output = self.model(patches)
loss = self.evaluate_metric(patches, output)
loss_buf.append(float(loss))
del loss
del patches
self.model.train()
res = {
'loss': np.mean(loss_buf),
}
del loss_buf
return res
def _snapshot(self, epoch):
save_dir = os.path.join(self.save_dir, self.dataset)
torch.save(self.model.state_dict(), save_dir + "_" + str(epoch) + '.pkl')
print(f"Save model to {save_dir}_{str(epoch)}.pkl")
def _load_pretrain(self, pretrain):
state_dict = torch.load(pretrain, map_location='cpu')
self.model.load_state_dict(state_dict)
print(f"Load model from {pretrain}.pkl")
def _get_lr(self, group=0):
return self.optimizer.param_groups[group]['lr']