This repository has been archived by the owner on Jun 16, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 230
/
go.py
406 lines (346 loc) · 14.4 KB
/
go.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
'''
A board is a NxN numpy array.
A Coordinate is a tuple index into the board.
A Move is a (Coordinate c | None).
A PlayerMove is a (Color, Move) tuple
(0, 0) is considered to be the upper left corner of the board, and (18, 0) is the lower left.
'''
from collections import namedtuple
import copy
import itertools
import numpy as np
# Represent a board as a numpy array, with 0 empty, 1 is black, -1 is white.
# This means that swapping colors is as simple as multiplying array by -1.
WHITE, EMPTY, BLACK, FILL, KO, UNKNOWN = range(-1, 5)
class PlayerMove(namedtuple('PlayerMove', ['color', 'move'])): pass
# Represents "group not found" in the LibertyTracker object
MISSING_GROUP_ID = -1
class IllegalMove(Exception): pass
# these are initialized by set_board_size
N = None
ALL_COORDS = []
EMPTY_BOARD = None
NEIGHBORS = {}
DIAGONALS = {}
def set_board_size(n):
'''
Hopefully nobody tries to run both 9x9 and 19x19 game instances at once.
Also, never do "from go import N, W, ALL_COORDS, EMPTY_BOARD".
'''
global N, ALL_COORDS, EMPTY_BOARD, NEIGHBORS, DIAGONALS
if N == n: return
N = n
ALL_COORDS = [(i, j) for i in range(n) for j in range(n)]
EMPTY_BOARD = np.zeros([n, n], dtype=np.int8)
def check_bounds(c):
return c[0] % n == c[0] and c[1] % n == c[1]
NEIGHBORS = {(x, y): list(filter(check_bounds, [(x+1, y), (x-1, y), (x, y+1), (x, y-1)])) for x, y in ALL_COORDS}
DIAGONALS = {(x, y): list(filter(check_bounds, [(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)])) for x, y in ALL_COORDS}
def place_stones(board, color, stones):
for s in stones:
board[s] = color
def find_reached(board, c):
color = board[c]
chain = set([c])
reached = set()
frontier = [c]
while frontier:
current = frontier.pop()
chain.add(current)
for n in NEIGHBORS[current]:
if board[n] == color and not n in chain:
frontier.append(n)
elif board[n] != color:
reached.add(n)
return chain, reached
def is_koish(board, c):
'Check if c is surrounded on all sides by 1 color, and return that color'
if board[c] != EMPTY: return None
neighbors = {board[n] for n in NEIGHBORS[c]}
if len(neighbors) == 1 and not EMPTY in neighbors:
return list(neighbors)[0]
else:
return None
def is_eyeish(board, c):
'Check if c is an eye, for the purpose of restricting MC rollouts.'
color = is_koish(board, c)
if color is None:
return None
diagonal_faults = 0
diagonals = DIAGONALS[c]
if len(diagonals) < 4:
diagonal_faults += 1
for d in diagonals:
if not board[d] in (color, EMPTY):
diagonal_faults += 1
if diagonal_faults > 1:
return None
else:
return color
class Group(namedtuple('Group', ['id', 'stones', 'liberties', 'color'])):
'''
stones: a set of Coordinates belonging to this group
liberties: a set of Coordinates that are empty and adjacent to this group.
color: color of this group
'''
def __eq__(self, other):
return self.stones == other.stones and self.liberties == other.liberties and self.color == other.color
class LibertyTracker():
@staticmethod
def from_board(board):
board = np.copy(board)
curr_group_id = 0
lib_tracker = LibertyTracker()
for color in (WHITE, BLACK):
while color in board:
curr_group_id += 1
found_color = np.where(board == color)
coord = found_color[0][0], found_color[1][0]
chain, reached = find_reached(board, coord)
liberties = set(r for r in reached if board[r] == EMPTY)
new_group = Group(curr_group_id, chain, liberties, color)
lib_tracker.groups[curr_group_id] = new_group
for s in chain:
lib_tracker.group_index[s] = curr_group_id
place_stones(board, FILL, chain)
lib_tracker.max_group_id = curr_group_id
liberty_counts = np.zeros([N, N], dtype=np.uint8)
for group in lib_tracker.groups.values():
num_libs = len(group.liberties)
for s in group.stones:
liberty_counts[s] = num_libs
lib_tracker.liberty_cache = liberty_counts
return lib_tracker
def __init__(self, group_index=None, groups=None, liberty_cache=None, max_group_id=1):
# group_index: a NxN numpy array of group_ids. -1 means no group
# groups: a dict of group_id to groups
# liberty_cache: a NxN numpy array of liberty counts
self.group_index = group_index if group_index is not None else -np.ones([N, N], dtype=np.int16)
self.groups = groups or {}
self.liberty_cache = liberty_cache if liberty_cache is not None else np.zeros([N, N], dtype=np.uint8)
self.max_group_id = max_group_id
def __deepcopy__(self, memodict={}):
new_group_index = np.copy(self.group_index)
new_lib_cache = np.copy(self.liberty_cache)
new_groups = {
group.id: Group(group.id, set(group.stones), set(group.liberties), group.color)
for group in self.groups.values()
}
return LibertyTracker(new_group_index, new_groups, liberty_cache=new_lib_cache, max_group_id=self.max_group_id)
def add_stone(self, color, c):
assert self.group_index[c] == MISSING_GROUP_ID
captured_stones = set()
opponent_neighboring_group_ids = set()
friendly_neighboring_group_ids = set()
empty_neighbors = set()
for n in NEIGHBORS[c]:
neighbor_group_id = self.group_index[n]
if neighbor_group_id != MISSING_GROUP_ID:
neighbor_group = self.groups[neighbor_group_id]
if neighbor_group.color == color:
friendly_neighboring_group_ids.add(neighbor_group_id)
else:
opponent_neighboring_group_ids.add(neighbor_group_id)
else:
empty_neighbors.add(n)
new_group = self._create_group(color, c, empty_neighbors)
for group_id in friendly_neighboring_group_ids:
new_group = self._merge_groups(group_id, new_group.id)
for group_id in opponent_neighboring_group_ids:
neighbor_group = self.groups[group_id]
if len(neighbor_group.liberties) == 1:
captured = self._capture_group(group_id)
captured_stones.update(captured)
else:
self._update_liberties(group_id, remove={c})
self._handle_captures(captured_stones)
# suicide is illegal
if len(new_group.liberties) == 0:
raise IllegalMove
return captured_stones
def _create_group(self, color, c, liberties):
self.max_group_id += 1
new_group = Group(self.max_group_id, set([c]), liberties, color)
self.groups[new_group.id] = new_group
self.group_index[c] = new_group.id
self.liberty_cache[c] = len(liberties)
return new_group
def _merge_groups(self, group1_id, group2_id):
group1 = self.groups[group1_id]
group2 = self.groups[group2_id]
group1.stones.update(group2.stones)
del self.groups[group2_id]
for s in group2.stones:
self.group_index[s] = group1_id
self._update_liberties(group1_id, add=group2.liberties, remove=(group2.stones | group1.stones))
return group1
def _capture_group(self, group_id):
dead_group = self.groups[group_id]
del self.groups[group_id]
for s in dead_group.stones:
self.group_index[s] = MISSING_GROUP_ID
self.liberty_cache[s] = 0
return dead_group.stones
def _update_liberties(self, group_id, add=None, remove=None):
group = self.groups[group_id]
if add:
group.liberties.update(add)
if remove:
group.liberties.difference_update(remove)
new_lib_count = len(group.liberties)
for s in group.stones:
self.liberty_cache[s] = new_lib_count
def _handle_captures(self, captured_stones):
for s in captured_stones:
for n in NEIGHBORS[s]:
group_id = self.group_index[n]
if group_id != MISSING_GROUP_ID:
self._update_liberties(group_id, add={s})
class Position():
def __init__(self, board=None, n=0, komi=7.5, caps=(0, 0), lib_tracker=None, ko=None, recent=tuple(), to_play=BLACK):
'''
board: a numpy array
n: an int representing moves played so far
komi: a float, representing points given to the second player.
caps: a (int, int) tuple of captures for B, W.
lib_tracker: a LibertyTracker object
ko: a Move
recent: a tuple of PlayerMoves, such that recent[-1] is the last move.
to_play: BLACK or WHITE
'''
self.board = board if board is not None else np.copy(EMPTY_BOARD)
self.n = n
self.komi = komi
self.caps = caps
self.lib_tracker = lib_tracker or LibertyTracker.from_board(self.board)
self.ko = ko
self.recent = recent
self.to_play = to_play
def __deepcopy__(self, memodict={}):
new_board = np.copy(self.board)
new_lib_tracker = copy.deepcopy(self.lib_tracker)
return Position(new_board, self.n, self.komi, self.caps, new_lib_tracker, self.ko, self.recent, self.to_play)
def __str__(self):
pretty_print_map = {
WHITE: 'O',
EMPTY: '.',
BLACK: 'X',
FILL: '#',
KO: '*',
}
board = np.copy(self.board)
captures = self.caps
if self.ko is not None:
place_stones(board, KO, [self.ko])
raw_board_contents = []
for i in range(N):
row = []
for j in range(N):
appended = '<' if (self.recent and (i, j) == self.recent[-1].move) else ' '
row.append(pretty_print_map[board[i,j]] + appended)
raw_board_contents.append(''.join(row))
row_labels = ['%2d ' % i for i in range(N, 0, -1)]
annotated_board_contents = [''.join(r) for r in zip(row_labels, raw_board_contents, row_labels)]
header_footer_rows = [' ' + ' '.join('ABCDEFGHJKLMNOPQRST'[:N]) + ' ']
annotated_board = '\n'.join(itertools.chain(header_footer_rows, annotated_board_contents, header_footer_rows))
details = "\nMove: {}. Captures X: {} O: {}\n".format(self.n, *captures)
return annotated_board + details
def is_move_suicidal(self, move):
potential_libs = set()
for n in NEIGHBORS[move]:
neighbor_group_id = self.lib_tracker.group_index[n]
if neighbor_group_id == MISSING_GROUP_ID:
# at least one liberty after playing here, so not a suicide
return False
neighbor_group = self.lib_tracker.groups[neighbor_group_id]
if neighbor_group.color == self.to_play:
potential_libs |= neighbor_group.liberties
elif len(neighbor_group.liberties) == 1:
# would capture an opponent group if they only had one lib.
return False
# it's possible to suicide by connecting several friendly groups
# each of which had one liberty.
potential_libs -= set([move])
return not potential_libs
def is_move_legal(self, move):
'Checks that a move is on an empty space, not on ko, and not suicide'
if move is None:
return True
if self.board[move] != EMPTY:
return False
if move == self.ko:
return False
if self.is_move_suicidal(move):
return False
return True
def pass_move(self, mutate=False):
pos = self if mutate else copy.deepcopy(self)
pos.n += 1
pos.recent += (PlayerMove(pos.to_play, None),)
pos.to_play *= -1
pos.ko = None
return pos
def flip_playerturn(self, mutate=False):
pos = self if mutate else copy.deepcopy(self)
pos.ko = None
pos.to_play *= -1
return pos
def get_liberties(self):
return self.lib_tracker.liberty_cache
def play_move(self, c, color=None, mutate=False):
# Obeys CGOS Rules of Play. In short:
# No suicides
# Chinese/area scoring
# Positional superko (this is very crudely approximate at the moment.)
if color is None:
color = self.to_play
pos = self if mutate else copy.deepcopy(self)
if c is None:
pos = pos.pass_move(mutate=mutate)
return pos
if not self.is_move_legal(c):
raise IllegalMove()
place_stones(pos.board, color, [c])
captured_stones = pos.lib_tracker.add_stone(color, c)
place_stones(pos.board, EMPTY, captured_stones)
opp_color = color * -1
if len(captured_stones) == 1 and is_koish(self.board, c) == opp_color:
new_ko = list(captured_stones)[0]
else:
new_ko = None
if pos.to_play == BLACK:
new_caps = (pos.caps[0] + len(captured_stones), pos.caps[1])
else:
new_caps = (pos.caps[0], pos.caps[1] + len(captured_stones))
pos.n += 1
pos.caps = new_caps
pos.ko = new_ko
pos.recent += (PlayerMove(color, c),)
pos.to_play *= -1
return pos
def score(self):
working_board = np.copy(self.board)
while EMPTY in working_board:
unassigned_spaces = np.where(working_board == EMPTY)
c = unassigned_spaces[0][0], unassigned_spaces[1][0]
territory, borders = find_reached(working_board, c)
border_colors = set(working_board[b] for b in borders)
X_border = BLACK in border_colors
O_border = WHITE in border_colors
if X_border and not O_border:
territory_color = BLACK
elif O_border and not X_border:
territory_color = WHITE
else:
territory_color = UNKNOWN # dame, or seki
place_stones(working_board, territory_color, territory)
return np.count_nonzero(working_board == BLACK) - np.count_nonzero(working_board == WHITE) - self.komi
def result(self):
score = self.score()
if score > 0:
return 'B+' + '%.1f' % score
elif score < 0:
return 'W+' + '%.1f' % abs(score)
else:
return 'DRAW'
set_board_size(19)