Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

执行预训练 pre-training on GPU/TPU using the command.训练tiny模型 #146

Open
gaojingqian opened this issue Oct 20, 2020 · 0 comments

Comments

@gaojingqian
Copy link

gaojingqian commented Oct 20, 2020

export BERT_BASE_DIR=./albert_tiny_zh
nohup python3 run_pretraining.py --input_file=./data/tf*.tfrecord
--output_dir=./my_new_model_path --do_train=True --do_eval=True --bert_config_file=$BERT_BASE_DIR/albert_config_tiny.json
--train_batch_size=4096 --max_seq_length=512 --max_predictions_per_seq=51
--num_train_steps=125000 --num_warmup_steps=12500 --learning_rate=0.00176
--save_checkpoints_steps=2000 --init_checkpoint=$BERT_BASE_DIR/albert_model.ckpt
使用pretrain,采用tiny的模型init。data大小17M;中间训练过程中保存的模型data大小约50M,这中间多出的是哪些东西啊?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant