-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmakecooccurrences.py
80 lines (67 loc) · 2.31 KB
/
makecooccurrences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import gzip
from collections import defaultdict
import numpy as np
# Location of corpus
corpus = "reuters.rcv1.tokenized.gz"
# Word frequencies
freq = defaultdict(int)
# Calculate frequencies
i = 0
with gzip.open(corpus, "rt", encoding='utf8', errors="ignore") as f:
for line in f:
sline = line.strip().split()
for token in sline:
freq[token] += 1
# Uncomment this for testing.
#if i > 100000:
# break
i += 1
total = i
# This maps the context words to integer (and vice versa)
D = 500
topD = sorted(freq.items(), key=lambda p: p[1], reverse=True)[:D]
topD_map = {}
topD_map_reverse = {}
for i,tup in enumerate(topD):
word,wfreq = tup
topD_map[word] = i
topD_map_reverse[i] = word
# This maps word to integer (and vice versa)
vocab_map = {}
vocab_map_reverse = {}
for i,word in enumerate(freq):
vocab_map[word] = i
vocab_map_reverse[i] = word
# Now build term-context matrix
M = np.zeros((len(freq), D))
window = 3
k = 0
with gzip.open(corpus, "rt", encoding='utf-8', errors="ignore") as f:
for line in f:
sline = line.strip().split()
for i in range(0,len(sline)):
for j in range(i+1, min(len(sline), i+window+1)):
if i == j: continue
# add (i,j)
token_id = vocab_map[sline[i]]
context_token = sline[j]
if context_token in topD_map:
context_token_id = topD_map[context_token]
M[token_id][context_token_id] += 1
# add (j,i)
token_id = vocab_map[sline[j]]
context_token = sline[i]
if context_token in topD_map:
context_token_id = topD_map[context_token]
M[token_id][context_token_id] += 1
k += 1
if k%10000 == 0:
print("Progress:", k/float(total))
# Uncomment this for testing.
#if k > 10000:
# break
# Write out to file.
with open("coocvec-{}mostfreq-window-{}.vec".format(D, window), "w") as out:
out.write("{0} {1}\n".format(M.shape[0], M.shape[1]))
for i,row in enumerate(M):
out.write("{0} {1}\n".format(vocab_map_reverse[i], " ".join(map(lambda s: str(s), M[i]))))