-
Notifications
You must be signed in to change notification settings - Fork 8
/
main.py
executable file
·121 lines (106 loc) · 4.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!/usr/bin/env python3
# -*- coding: UTF8 -*-
#############################################################################
# Authors: Vincent Mallet, Guillaume Bouvier #
# Copyright (c) 2021 Institut Pasteur #
# #
# #
# Redistribution and use in source and binary forms, with or without #
# modification, are permitted provided that the following conditions #
# are met: #
# #
# 1. Redistributions of source code must retain the above copyright #
# notice, this list of conditions and the following disclaimer. #
# 2. Redistributions in binary form must reproduce the above copyright #
# notice, this list of conditions and the following disclaimer in the #
# documentation and/or other materials provided with the distribution. #
# 3. Neither the name of the copyright holder nor the names of its #
# contributors may be used to endorse or promote products derived from #
# this software without specific prior written permission. #
# #
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS #
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT #
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR #
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT #
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, #
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT #
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, #
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY #
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT #
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE #
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #
# #
# This program is free software: you can redistribute it and/or modify #
# #
#############################################################################
import os
import torch
import pickle
import matplotlib.pyplot as plt
import numpy as np
from quicksom.som import SOM
from sklearn.datasets import make_moons
try:
os.mkdir('out')
except FileExistsError:
pass
try:
os.mkdir('figs')
except FileExistsError:
pass
# BUILD DATASET if does not exist yet or too short for the required number of points
max_points = 100
create_data = False
if os.path.exists('data/moons.txt'):
X = np.genfromtxt('data/moons.txt')
if len(X) >= max_points:
create_data = False
y = X[:, 2]
X = X[:, :2]
if create_data:
X, y = make_moons(n_samples=max_points, noise=0.05)
np.savetxt('data/moons.txt', np.c_[X, y])
X = X[:max_points]
y = y[:max_points]
plt.scatter(X[:, 0], X[:, 1])
plt.savefig('figs/moons.png')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
X = torch.from_numpy(X)
X = X.float()
X = X.to(device)
if not os.path.exists('out/trained.p'):
m, n = 50, 50
dim = X.shape[1]
niter = 100
batch_size = 100
som = SOM(m, n, dim, niter=niter, device=device)
learning_error = som.fit(X, batch_size=batch_size)
bmus, inference_error = som.predict(X, batch_size=batch_size)
else:
pass
som = pickle.load(open('out/trained.p', 'rb'))
som.to_device('cpu')
pickle.dump(som, open('out/trained.p', 'wb'))
X = X.to('cpu')
bmus, inference_error = som.predict(X)
smap = som.centroids.cpu().numpy().reshape((som.m, som.n, -1))
predicted_clusts, errors = som.predict_cluster(X)
umat = som.umat
plt.matshow(umat)
plt.colorbar()
plt.savefig('figs/umat.png')
plt.clf()
# Problem in the x,y scale formalism vs the grid format. First coordinate of an array is the rows...
plt.matshow(umat)
plt.scatter(bmus[:, 1][y == 0], bmus[:, 0][y == 0], c='red')
plt.scatter(bmus[:, 1][y == 1], bmus[:, 0][y == 1], c='green')
plt.savefig('figs/project.png')
plt.clf()
# Problem in the x,y scale formalism vs the grid format. First coordinate of an array is the rows...
plt.matshow(umat)
plt.scatter(bmus[:, 1], bmus[:, 0], c=predicted_clusts)
plt.savefig('figs/project_clusts.png')
plt.clf()
plt.scatter(X[:, 0], X[:, 1], c=predicted_clusts)
plt.savefig('figs/clusts.png')
plt.clf()