-
Notifications
You must be signed in to change notification settings - Fork 1
/
num2
466 lines (334 loc) · 14.9 KB
/
num2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
\documentclass{article}
\usepackage[paper=a4paper,left=40mm,right=40mm,top=25mm,bottom=25mm]{geometry}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{tabularx}
\usepackage{paralist}
\usepackage{hyperref} %klickbares Inhaltsverzeichnis
\usepackage{xcolor}
%\newcommand{\qed}{\hfill $\Box$}
\newcommand{\limn}{\lim_{n \to \infty}}
\newcommand{\einhalb}{\frac{1}{2}}
\newcommand{\teinhalb}{\tfrac{1}{2}}
\newcommand{\halbe}[1]{\frac{#1}{2}}
\newcommand{\norm}[1]{\lVert #1 \rVert}
\newcommand{\bignorm}[1]{\big\lVert #1 \big\rVert}
\newcommand{\Bignorm}[1]{\Big\lVert #1 \Big\rVert}
\newcommand{\biggnorm}[1]{\bigg\lVert #1 \bigg\rVert}
\newcommand{\folge}[1]{({#1}_n)_{n \in \mathbb{N}}}
\newcommand{\einsdurch}[1]{\frac{1}{#1}}
\newcommand{\teinsdurch}[1]{\tfrac{1}{#1}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\ohnenull}{\setminus\{0\}}
\newcommand{\links}{\glqq$\Leftarrow$\grqq}
\newcommand{\und}{~ \text{and} ~}
\newcommand{\grad}{\text{grad}~}
\newcommand{\gdw}{\Leftrightarrow}
\newcommand{\rot}{\color{red}}
\newcommand{\blau}{\color{blue}}
\newcommand{\rank}{\text{rank}}
\newcommand{\partiell}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\nhn}{\newline\hfill\newline}
\renewcommand \thesection{\Roman{section}}
\renewcommand \thesubsubsection{\Roman{section}.\arabic{subsubsection}}
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{definition}[theorem]{Definition}
%\theoremstyle{remark}
%\newtheorem*{remark}{Remark}
\theoremstyle{definition}
\newtheorem*{remark}{Remark}
\newtheorem*{example}{Example}
\title{Numerical Mathematics II \\ SS 2019}
\author{}
\begin{document}
\maketitle
\tableofcontents
\newpage
\section{Basic Facts on Ordinary Differential Equations}
\begin{definition}
An ODE of first order in some interval $I\subset \R$ is an equation of the form
\[
y'(t)=f(t,y(t)),~ t \in I
\]
where $y: I \to \C^n ,~~ y\in C^1(I)$ and $f: I\times\C^n\to\C^n$. The order is the highest derivative in the ODE. We call an ODE \textbf{explicit} if we can solve it for $y'$ and \textbf{implicit} otherwise.
\end{definition}
\begin{definition}
An ordinary differential equation of order $n$ is given as
\[
y^{(n)}(t) = f(t,y(t),y'(t),\dots ,y^{(n-1)}(t))
\]
for $t \in I\subset \R$ where $y$ is a $n$-times differentiable function on $I$ and $f:I\times(\C^n)^n\to \C^n$ is a function.
A solution $y$ of an ODE on some $J\subset I$ is a (multiple) continuously differentiable function $y: I\to \C^n$ which solves the ODE
\end{definition}
\begin{remark}
An ODE of order $n$ can be transferred to an ODE of first order by transformation.
\end{remark}
\begin{definition}
We call an ODE
\[
y^{(n)}(t)=f(t,y(t),y'(t),\dots ,y^{(n-1)}(t)), t \in I
\]
an \textbf{initial value problem (IVP)} for $y$ if we have additionally the constraints $y(t_0)=y_0, \dots, y^{(n-1)}(t_0)=y_{n-1}$ for $t_0 \in I$.
\end{definition}
\begin{remark}
An ODE has a swarm of solutions, IVP has specific solutions. The swarm of solutions with all constraints is called general solution.
\end{remark}
\begin{theorem}[Picard-Lindelöf]
For $t_0\in\R,~ y_0\in\R^n,~a,b>0$ we set \[
I=[t_0 -a, t_0+a] \und Q=\{z\in\C^n ~|~ \norm{z-y_0}_\infty \leq b\}.\] Let furthermore $F:I\times Q\to\C^n$ be continuous, with bounded components by some constant $R$ and Lipschitz-continuous in the second argument, i.e.
\[
\big|F_j(t,u)-F(t,v)\big| \leq L \sum_{k=1}^n |u_k - v_k|, ~~j=1,\dots,n~,~~ t\in I,~~u,v \in Q.
\]
Then the IVP $y'(t)=F(t,y(t)),~ y(b)=y_0$ has on $J=[t_0-\alpha, t_0 + \alpha]\subset I$ with $\alpha=\min\{a,\frac b R\}$ exactly one differentiable solution.
\end{theorem}
\begin{proof}
No Proof.
\end{proof}
\begin{remark}
The existence is local around $t_0$.
\end{remark}
\begin{definition}
The system $y'(t)=A(t)y(t)+f(t)$ for some interval $I\subset\R$ with $A(t)=(a_{ij}(t))_{ij}\in\C^{n,n},~ a_{ij}:I\to\C \text{ for } i,j \in \{1,\dots, n\},~n\in\N, ~y: I\to \C^n$ and $f:I\to \C^n$ is a linear system of ODEs.
The function $f$ is called inhomogeneity.
The system is called homogenous if $f=0$ and inhomogeneous otherwise.
\end{definition}
\begin{theorem}
Let $y_1,y_n$ be two solutions of the homogeneous system
\end{theorem}
$ \int_{\varepsilon}^{\text{deine mudda}}\circ ~d \mu = [\text{abc}, \text{def}]$
\setcounter{subsection}{2}
\subsection{Qualitative Behaviour of ODEs}
\begin{example}
Let us consider the $n$-dimensional non contonomous system of first order
\begin{align*}
y'(t)&=f(t,y(t))\\
y(t_0)&=y_0
\end{align*}
where $f: D \to \R^n, ~D\subset I\times \R^n,~ t_0 \in I,~ I\subset \R$. The questions we are dealing with are:
\begin{enumerate}
\item Why only first order?
\item What is the relation between a non-autonomous and an autonomous system?
\end{enumerate}
\end{example}
The reason behind 1. is that any ODE of $n$-th order can be transformed into a $n$-dimensional ODE of first order. Consider the ODE
\[
x^{(n)}=F(t,x(t),x'(t),\dots,x^{(n-1)}(t))
\]
and define a vector $y$ with its components $y_i, ~ i=1,\dots,n$ by
\[
y_i(t)=x^{(i-1)}(t)
\]
and a vector field $f(t,y)$ by
\[
f(t,y) = \Big(t,y_1,y_2,\dots,y_n,F(t,y_1,y_2,\dots,y_n)\Big)^T
\]
Then the ODE of $n$-th order is equivalent to $y'(t)=f(t,y)$.\newline
A system of the form $y'(t)=f(t,y)$ is called an non-autonomous system, a system of the form $y=f(y)$ is called autonomous. We can transform a non-autonomous system to an autonomous system.
Consider the ODE
\[
y'(t)=f(t,y) \und y(t_0) = y_0.
\]
We set
\[
z=\begin{bmatrix} y \\ s \end{bmatrix} \und \hat{f}=\begin{bmatrix} f(s,y) \\ 1 \end{bmatrix}, ~~ s\in \R
\]
Then
\[
z'(t)=\hat{f}(z(t)), ~ z(t_0)=z_0=\begin{bmatrix} y_0\\t_0 \end{bmatrix}
\]
is an autonomous system.
In short, each ODE in $\R^n$ can be transformed to an autonomous ODE in $\R^{n+1}$
\begin{remark}
In the theorem of Picard-Lindelöf the ODE is of the form $f(t,y)$, where $y$ has to be Lipschitz-continuous.
In the autonomous system the right hand side looks like $f(y(t))$, where $t$ and $y$ have to be Lipschitz-continuous.
\end{remark}
\subsubsection*{Analytic Continuation}
"Local solutions can be spread onto a maximum time interval."\newline
\setcounter{theorem}{13}
\begin{definition}[Local Lipschitz]
A function $f: X \to Y$ is local Lipschitz in $x\in X$ if the exists a neighbourhood $U_x \subseteq X$ around $x$ such that $f|_{U_x}$ is Lipschitz-continuous.
\end{definition}
For $G:=I\times Q$ with $I=[t_0-a, t_0+a], ~ Q=\{z\in\C~|~ \norm{z-y_0}\leq b\}$ with $a,b>0$ the theorem of Picard-Lindelöf gives for local Lipschitz $f$ the existence of a solution $y_0(t)$ of the IVP
\begin{align}
y'(t)&=f(t,y(t)) \tag{1.4}\\
y(t_0)&=y_0\notag
\end{align}
on some (small) inverval $I_0=[t_0-a_0,t_0+a_0]$ with $a_0=a>0$.
We will have a look at what happens if we apply the theorem of Picard-Lindelöf on one side of the interval $I_0$. Let now be $t_1:=t_0+a_0$ and $y_1 = y_0(t_1)$. We then have that $(y_1,t_1)\in G$ and according to Picard-Lindelöf we know that the IVP with $y(t_1)=y_1$ has a unique solution $y_1(t)$ on $I_1:=[t_1-a_0,t_1+a_1]$ where $a_1>0$.
Due to the uniqueness of the solution if hold $y_0(t)=y_1(t)$ on $I_0\cap I_1$ we are defining a continuoation of our solution on the greater interval.
It holds
\[
y_{+}(t)=y_0(t) ~\text{for}~ t\in[t_0,t_1]
\]
and
\[
y_{+}(t)=y_1(t) ~\text{for}~ t \in (t_1,t_1+a_1]
\]
analogue for $y_{-}(t)$. Thus there exists a unique solution on the interval $[t_0, t_0+a_0+a_1+\dots]$ if $\sum_{k=0}^{\infty}a_k<\infty$. If $\sum_{k=0}^{\infty}a_k$ diverges, the solution exists globally in forward time.
\begin{remark}
It can happen that $a_n$ can arbitrary small when $(t_k,y_{+}(t_k))$ approaches the boundary of $G$. Then either $\norm{f((t_k),y_{+}(t_k))}$ or the Lipschitz-constant $L$ might get arbitrary large.
\end{remark}
\begin{definition}
Let $f:G \to \R^n$ be continuous and local Lipschitz with respect to $y$ and let $(t_0,y_0)\in G$. Let furthermore $t_{\pm}:=t_{\pm}(t_0,y_0)\in\R$ be defined as
\begin{align*}
t_{+}&=\sup \{\tau>t_0 ~|~ \text{there exists a continuation}~ y_+ \text{ of (1.4) on } [t_0,\tau]\}\\
t_{-}&=~\inf \{\tau>t_0 ~|~ \text{there exists a continuation}~ y_- \text{ of (1.4) on } [t_0,\tau]\}.
\end{align*}
The interval $(t_-,t_+)$ is the largest interval of existence of the IVP with some initial point $y(t_0)=y_0$.
The maximum solution $y(t)$ is
\[
y(t)=\begin{cases} y_+(t) \text{ for } t\in[t_0,t_+) \\ y_-(t) \text{ for } t\in (t_-,t_0].\end{cases}
\]
\end{definition}
\begin{example}
Consider
\[
y'=y^2, ~ y(t_0)=y(0)=1, ~ y(t)=\frac{1}{1-t}.
\]
Then we have $(t_-,t_+)=(-\infty, 1) \text{ or } (1,\infty)$.
\end{example}
\begin{remark}
In case of $t_+<\infty$ the maximum solution approches for $t\to t_+$, it can then happen that $\norm{y(t)}$ is unbounded. This is also called "blow up".
\end{remark}
\subsubsection*{Solutions and Initial Data}
"What is the influence of a perturbation in $f,~y_0$ or $t_0$ on the solution?"\newline
To consider this, we need the following Lemma.
\begin{lemma}[Grönwall-Lemma]
Let $I=[a,b]\subseteq \R$ and $g:I\to\R$ be a continuous function. If
\[
0\leq g(t)\leq \delta+\gamma \int_{a}^{t }g(x)~dx
\]
holds for all $t\in I, ~\delta,\gamma >0$, then it holds
\[
g(t)\leq\delta e^{\gamma(t-a)}.
\]
\end{lemma}
\begin{proof}
We set
\[
\varphi(t)=\delta+\gamma \int_{a}^{t }g(x)~dx.
\]
Then we have
\[
\varphi'(t)=\gamma\cdot g(t) \leq \gamma\varphi(t).
\]
Since
\[
\Big(\varphi\cdot e^{-\gamma t}\Big)' = \varphi'\cdot e^{-\gamma t} + \varphi \cdot (-\gamma) e^{-\gamma t}= e^{-\gamma t}\Big(\varphi'(t)-\gamma\varphi(t)\Big)\leq 0
\]
we have that $\varphi e^{-\gamma t}$ is monotone falling. It thus follows
\[
g(t)\cdot e^{-\gamma t}\leq \varphi(t)\cdot e^{\gamma t} \leq \varphi(a)\cdot e^{-\gamma a}= \delta \cdot e^{-\gamma a}
\]
for all $t\geq a$.
\end{proof}
The Grönwall-Lemma allows us to prove the following theorem.
\begin{theorem}[Dependence on initial data]
Let $D\subset I\times \R^n$ be open, $f:D\to\R^n$ continuous and local Lipschitz with respect to $y$ and $(t_0,y_0) \in D$. If the solution of
\begin{align*}
y'(t)&=f(t,y(t))\\
y(t_0)&=y_0, ~y_0\in\R^n
\end{align*}
exists for all $t\in I=[a,b]$ then for each $\varepsilon>0$ there exists a $\delta>0$ such that \begin{enumerate}[(i)]
\item If $\norm{y_0-z_0}<\delta$ there also exists a solution of
\begin{align*}
z'(t)&=f(t,z(t))\\
z(t_0)&=z_0, ~z_0\in\R^n
\end{align*}
for $t \in I$.
\item It holds
\[
\max_{t\in I}\norm{y(t)-z(t)}<\varepsilon.
\]
\end{enumerate}
\end{theorem}
\begin{proof}
Since $D$ is open, there exists a $\bar\delta>0$ and a compact set
\[
K:=\{(t,z(t))~|~t\in I, ~ \norm{y(t)-z(t)}\leq\bar\delta\}\subset D.
\]
On $K$ the function $f$ is Lipschitz (with respect to $y$) with a Lipschitz-constant $L$. Let now $\delta<\bar\delta$ and $\norm{y_0-z_0}<\delta$. Then for all $t_0,t\in[a,b]$ it holds
\[
\norm{z(t)-y(t)}\leq \delta+L \int_{t_0}^{t }\norm{y(x)-z(x)}~dx.
\]
This can be seen by the integral representation of $y(t)$. Applying Grönwall's Lemma with $\gamma=L$ yields
\begin{equation}
\norm{y(t)-z(t)}\leq\delta\cdot e^{L(t-t_0)} \tag{I.5}
\end{equation}
and by choosing $\delta\leq\bar\delta\cdot e^{L(a-b)}$ it holds $\norm{y(t)-z(t)}\leq \bar\delta$ for all $t\in I$. Thus it holds $(t,z(t))\in K$ for $t\in[a,b]$ and hence we have shown \textit{(i)}.
By choosing $\delta<\varepsilon\cdot e^{L(a-b)}$ it follows \textit{(ii)}.
\end{proof}
\begin{remark}
We have thus shown, that the solution $y(t)$ of the IVP with initial value $y(t_0)=y_0$ depends continuously on the initial data. The solution is often written as $y(t;t_0,y_0,f)$.
\end{remark}
\begin{example}
Let us consider the ODE
\begin{align*}
y'&=\lambda y, ~ \lambda \in \R\\
y(0)&=y_0
\end{align*}
Here we have $L=|\lambda|$. The equation (I.5) gives
\[
|y(t)-z(t)|\leq e^{|\lambda|\cdot t} |y_0-z_0|.
\]
For $\lambda<0$ we know that $|y(t)-z(t)|$ decreases exponentially.
\end{example}
\subsection{Stability and Flow}
\subsubsection*{Vector field}
A solution of an ODE is a function $y:I\to\R^n$ which is differentiable on $I$. Its graph $\{(t,y(t))~|~t\in I\}$ is a differentiable curve in $\R^{n+1}$ also known as \textit{solution curve} or \textit{integral curve}. In each point $(t,y(t))$ the direction of the tangent is given by the $(1,f(t,y(t)))$. In other words, $f$ is assigning a direction to each point.
\subsubsection*{Stability and small perturbations}
Consider
\[
y'(t)=f(t,y(t)), ~ y(t_0)=y_0.
\]
We are now interested in a comparison of different solutions for $t\in[t_0,\infty)$ with respect to the initial condition. We denote the solution by $y(t)=y(t,t_0)$.
Stability: $y(t_0)=\tilde y$ with $\tilde y$ near by $y_0$. The question we are dealing with is "How does $y(t,\tilde y)$ behave in comparison with $y(t,y_0)$?".\newline
Let us consider an autonomous ODE, i.e. an ODE of the form $y'(t)=f(y(t))$.
\begin{definition}[Equilibrium Point]
A point $\bar y\in D\subset\R^n$ is called an equilibrium point of a mapping $f:D\to\R^n$ if $f(\bar y)=0$. The constant solution $y(t)=\bar y$ is the only solution with $y(t_0)=\bar y$.
\end{definition}
\begin{remark}
Other names for equilibrium points are fixed points, equilibria and stationary points.
\end{remark}
\begin{definition}[Stability and asymptotic stability]
An equilibrium point is \textbf{stable} (in the sense of Ljapunov) if for each $\varepsilon>0$ there exists a $\delta>0$ such that for $t\geq t_0$ and for all trajectories $y(t)$ with $\norm{y(t_0)-\bar y}\leq \delta$ it holds that
\[
\norm{y(t)-\bar y}\leq \varepsilon.
\]
An equilibrium point is \textbf{instable} if it is not stable. \newline
\noindent An equilibrium point $\bar y$ is \textbf{asymptotic stable} if there exists a neighbourhood $U_{\bar y}$ of $\bar y$ such that
\[
y(t_0)\in U_{\bar y} \Rightarrow \lim_{t\to\infty} y(t)=\bar y.
\]
In this case $\bar y$ is called a sink.
An equilibrium point $\bar y$ is a spring if for each solution $y(t)$ with $y(t_0)\in U_{\bar y}$ and $y(t_0)\neq \bar y$ there exists a $t_1>t_0$ such that $y(t)\not \in U_{\bar y}$ for all $t\geq t_1$.
\end{definition}
\begin{example}
Consider an ODE in $\R^1$ given by $y'(t)=f(t,y(t))$. The equilibrium point is asymptotic stable if in $U_{\bar y}$ it holds that
\[
f(y)<0 \text{ for } y<\bar y ~~\und~~ f(y)>0 \text{ for } y>\bar y.
\]
\end{example}
\begin{definition}[Stability of solutions]
Let $y(t;y_0)$ be a solution of $y'(t)=f(y(t)), ~y(t_0)=y_0 ~\forall t\geq t_0$. Then the solution is \textbf{stable} if for each $\varepsilon>0$ there exists a $\delta>0$ such that
\[
\norm{y_0-\tilde y_0}\leq \delta \Rightarrow \norm{y(t;y_0)-y(t,\tilde y_0)}<\varepsilon
\]
for all $t>t_0$.
The solution is \textbf{attractive} if there exists a $\delta >0$ such that
\[
\norm{y_0-\tilde y_0}<\delta \Rightarrow \lim_{t\to\infty}\norm{y(t;y_0)-y(t,\tilde y_0)}=0.
\]
The solution is \textbf{asymptotic stable} if its stable and attractive.
\end{definition}
\end{document}