forked from gstark0/anns
-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
125 lines (108 loc) · 4.05 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from flask import Blueprint, request, jsonify
from cStringIO import StringIO
import tensorflow as tf
import sys
import re
_model = Blueprint('_model', __name__)
# Model parameters
input_layer = 3
hidden_layers = []
output_layer = 2
activation = 'Tanh'
learning_rate = 0.01
problem_type = 'Classification'
data = []
def process_data():
x_train, y_train = [], []
x_test, y_test = [], []
i = 0
for row in data:
if i < int(0.8*len(data)):
x_train.append([float(row.replace('\n', '').split(',')[0]), float(row.replace('\n', '').split(',')[1])])
y_ = [float(row.replace('\n', '').split(',')[2])]
if y_ == 1.0:
y_train.append([0, 1])
else:
y_train.append([1, 0])
else:
x_test.append([float(row.replace('\n', '').split(',')[0]), float(row.replace('\n', '').split(',')[1])])
y_ = [float(row.replace('\n', '').split(',')[2])]
if y_ == 1.0:
y_test.append([0, 1])
else:
y_test.append([1, 0])
i += 1
return x_train, y_train, x_test, y_test
def get_data():
with open('dataset.csv', 'r') as f:
lines = f.readlines()
for line in lines:
data.append(line.replace('\n', ''))
@_model.route('/generate_model', methods=['GET', 'POST'])
def generateModel():
global input_layer
input_layer = int(request.json['input_layer'])
global hidden_layers
hidden_layers = list(request.json['hidden_layers'])
for i in range(len(hidden_layers)):
hidden_layers[i] = int(hidden_layers[i])
global output_layer
output_layer = int(request.json['output_layer'])
global activation
activation = str(request.json['activation']).lower()
global learning_rate
learning_rate = float(request.json['learning_rate'])
global problem_type
problem_type = str(request.json['problem_type']).lower()
return jsonify('success')
def model():
layers = []
activation_funcs = {'relu': tf.nn.relu, 'tanh': tf.nn.tanh, 'sigmoid': tf.nn.sigmoid}
for layer in range(len(hidden_layers)):
if layer == 0:
layers.append(tf.layers.dense(
inputs=x,
units=hidden_layers[layer],
activation=activation_funcs[activation]))
else:
layers.append(tf.layers.dense(
inputs=layers[layer-1],
units=hidden_layers[layer],
activation=activation_funcs[activation]))
if len(layers) != 0:
logits = tf.layers.dense(
inputs=layers[-1],
units=output_layer)
else:
logits = tf.layers.dense(
inputs=x,
units=output_layer)
out = tf.nn.softmax(logits)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(out, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
return accuracy, loss, optimizer
graph1 = tf.Graph()
with graph1.as_default():
x = tf.placeholder(tf.float32, [None, 2])
y = tf.placeholder(tf.float32, [None, 2])
@_model.route('/train', methods=['GET', 'POST'])
def train():
epochs = int(request.json['n_epochs'])
print(epochs)
total_loss = []
acc = None
with graph1.as_default():
accuracy, loss, optimizer = model()
with tf.Session(graph=graph1) as sess:
sess.run(tf.global_variables_initializer())
x_train, y_train, x_test, y_test = process_data()
for epoch in range(epochs):
sess.run(optimizer, {x: x_train, y: y_train})
total_loss.append(float(sess.run(loss, {x: x_train, y: y_train})))
print(sess.run(accuracy, {x: x_test, y: y_test}))
acc = float(sess.run(accuracy, {x: x_test, y: y_test}))
tf.reset_default_graph()
print(total_loss[-1])
return jsonify({'acc': "{0:.2f}".format(acc), 'loss': "{0:.2f}".format(total_loss[-1]), 'total_loss': total_loss})