-
Notifications
You must be signed in to change notification settings - Fork 56
/
ppo.py
276 lines (232 loc) · 13.7 KB
/
ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
import re
import shutil
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
from utils import build_mlp, create_counter_variable, create_mean_metrics_from_dict
class PolicyGraph():
"""
Manages the policy computation graph
"""
def __init__(self, input_states, taken_actions, action_space, scope_name,
initial_std=0.4, initial_mean_factor=0.1,
pi_hidden_sizes=(500, 300), vf_hidden_sizes=(500, 300)):
"""
input_states [batch_size, width, height, depth]:
Input images to predict actions for
taken_actions [batch_size, num_actions]:
Placeholder of taken actions for training
action_space (gym.spaces.Box):
Continous action space of our agent
scope_name (string):
Variable scope name for the policy graph
initial_std (float):
Initial value of the std used in the gaussian policy
initial_mean_factor (float):
Variance scaling factor for the action mean prediction layer
pi_hidden_sizes (list):
List of layer sizes used to construct action predicting MLP
vf_hidden_sizes (list):
List of layer sizes used to construct value predicting MLP
"""
num_actions, action_min, action_max = action_space.shape[0], action_space.low, action_space.high
with tf.variable_scope(scope_name):
# Policy branch π(a_t | s_t; θ)
self.pi = build_mlp(input_states, hidden_sizes=pi_hidden_sizes, activation=tf.nn.relu, output_activation=tf.nn.relu)
self.action_mean = tf.layers.dense(self.pi, num_actions,
activation=tf.nn.tanh,
kernel_initializer=tf.initializers.variance_scaling(scale=initial_mean_factor),
name="action_mean")
self.action_mean = action_min + ((self.action_mean + 1) / 2) * (action_max - action_min)
self.action_logstd = tf.Variable(np.full((num_actions), np.log(initial_std), dtype=np.float32), name="action_logstd")
# Value branch V(s_t; θ)
if vf_hidden_sizes is None:
self.vf = self.pi # Share features if None
else:
self.vf = build_mlp(input_states, hidden_sizes=vf_hidden_sizes, activation=tf.nn.relu, output_activation=tf.nn.relu)
self.value = tf.squeeze(tf.layers.dense(self.vf, 1, activation=None, name="value"), axis=-1)
# Create graph for sampling actions
self.action_normal = tfp.distributions.Normal(self.action_mean, tf.exp(self.action_logstd), validate_args=True)
self.sampled_action = tf.squeeze(self.action_normal.sample(1), axis=0)
# Clip action space to min max
self.sampled_action = tf.clip_by_value(self.sampled_action, action_min, action_max)
# Get the log probability of taken actions
# log π(a_t | s_t; θ)
self.action_log_prob = tf.reduce_sum(self.action_normal.log_prob(taken_actions), axis=-1, keepdims=True)
class PPO():
"""
Proximal policy gradient model class
"""
def __init__(self, input_shape, action_space,
learning_rate=3e-4, lr_decay=0.998, epsilon=0.2,
value_scale=0.5, entropy_scale=0.01, initial_std=0.4,
model_dir="./"):
"""
input_shape [3]:
Shape of input images as a tuple (width, height, depth)
action_space (gym.spaces.Box):
Continous action space of our agent
learning_rate (float):
Initial learning rate
lr_decay (float):
Learning rate decay exponent
epsilon (float):
PPO clipping parameter
value_scale (float):
Value loss scale factor
entropy_scale (float):
Entropy loss scale factor
initial_std (float):
Initial value of the std used in the gaussian policy
model_dir (string):
Directory to output the trained model and log files
"""
num_actions = action_space.shape[0]
# Create counters
self.train_step_counter = create_counter_variable(name="train_step_counter")
self.predict_step_counter = create_counter_variable(name="predict_step_counter")
self.episode_counter = create_counter_variable(name="episode_counter")
# Create placeholders
self.input_states = tf.placeholder(shape=(None, *input_shape), dtype=tf.float32, name="input_state_placeholder")
self.taken_actions = tf.placeholder(shape=(None, num_actions), dtype=tf.float32, name="taken_action_placeholder")
self.returns = tf.placeholder(shape=(None,), dtype=tf.float32, name="returns_placeholder")
self.advantage = tf.placeholder(shape=(None,), dtype=tf.float32, name="advantage_placeholder")
# Create policy graphs
self.policy = PolicyGraph(self.input_states, self.taken_actions, action_space, "policy", initial_std=initial_std)
self.policy_old = PolicyGraph(self.input_states, self.taken_actions, action_space, "policy_old", initial_std=initial_std)
# Calculate ratio:
# r_t(θ) = exp( log π(a_t | s_t; θ) - log π(a_t | s_t; θ_old) )
# r_t(θ) = exp( log ( π(a_t | s_t; θ) / π(a_t | s_t; θ_old) ) )
# r_t(θ) = π(a_t | s_t; θ) / π(a_t | s_t; θ_old)
self.prob_ratio = tf.exp(self.policy.action_log_prob - self.policy_old.action_log_prob)
# Policy loss
adv = tf.expand_dims(self.advantage, axis=-1)
self.policy_loss = tf.reduce_mean(tf.minimum(self.prob_ratio * adv, tf.clip_by_value(self.prob_ratio, 1.0 - epsilon, 1.0 + epsilon) * adv))
# Value loss = mse(V(s_t) - R_t)
self.value_loss = tf.reduce_mean(tf.squared_difference(self.policy.value, self.returns)) * value_scale
# Entropy loss
self.entropy_loss = tf.reduce_mean(tf.reduce_sum(self.policy.action_normal.entropy(), axis=-1)) * entropy_scale
# Total loss
self.loss = -self.policy_loss + self.value_loss - self.entropy_loss
# Policy parameters
policy_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="policy/")
policy_old_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="policy_old/")
assert(len(policy_params) == len(policy_old_params))
for src, dst in zip(policy_params, policy_old_params):
assert(src.shape == dst.shape)
# Minimize loss
self.learning_rate = tf.train.exponential_decay(learning_rate, self.episode_counter.var, 1, lr_decay, staircase=True)
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
self.train_step = self.optimizer.minimize(self.loss, var_list=policy_params)
# Update network parameters
self.update_op = tf.group([dst.assign(src) for src, dst in zip(policy_params, policy_old_params)])
# Set up episodic metrics
metrics = {}
metrics["train_loss/policy"] = tf.metrics.mean(self.policy_loss)
metrics["train_loss/value"] = tf.metrics.mean(self.value_loss)
metrics["train_loss/entropy"] = tf.metrics.mean(self.entropy_loss)
metrics["train_loss/loss"] = tf.metrics.mean(self.loss)
for i in range(num_actions):
metrics["train_actor/action_{}/taken_actions".format(i)] = tf.metrics.mean(tf.reduce_mean(self.taken_actions[:, i]))
metrics["train_actor/action_{}/mean".format(i)] = tf.metrics.mean(tf.reduce_mean(self.policy.action_mean[:, i]))
metrics["train_actor/action_{}/std".format(i)] = tf.metrics.mean(tf.reduce_mean(tf.exp(self.policy.action_logstd[i])))
metrics["train/prob_ratio"] = tf.metrics.mean(tf.reduce_mean(self.prob_ratio))
metrics["train/returns"] = tf.metrics.mean(tf.reduce_mean(self.returns))
metrics["train/advantage"] = tf.metrics.mean(tf.reduce_mean(self.advantage))
metrics["train/learning_rate"] = tf.metrics.mean(tf.reduce_mean(self.learning_rate))
self.episodic_summaries, self.update_metrics_op = create_mean_metrics_from_dict(metrics)
# Set up stepwise training summaries
summaries = []
for i in range(num_actions):
summaries.append(tf.summary.histogram("train_actor_step/action_{}/taken_actions".format(i), self.taken_actions[:, i]))
summaries.append(tf.summary.histogram("train_actor_step/action_{}/mean".format(i), self.policy.action_mean[:, i]))
summaries.append(tf.summary.histogram("train_actor_step/action_{}/std".format(i), tf.exp(self.policy.action_logstd[i])))
summaries.append(tf.summary.histogram("train_step/input_states", self.input_states))
summaries.append(tf.summary.histogram("train_step/prob_ratio", self.prob_ratio))
self.stepwise_summaries = tf.summary.merge(summaries)
# Set up stepwise prediction summaries
summaries = []
for i in range(num_actions):
summaries.append(tf.summary.scalar("predict_actor/action_{}/sampled_action".format(i), self.policy.sampled_action[0, i]))
summaries.append(tf.summary.scalar("predict_actor/action_{}/mean".format(i), self.policy.action_mean[0, i]))
summaries.append(tf.summary.scalar("predict_actor/action_{}/std".format(i), tf.exp(self.policy.action_logstd[i])))
self.stepwise_prediction_summaries = tf.summary.merge(summaries)
# Setup model saver and dirs
self.saver = tf.train.Saver()
self.model_dir = model_dir
self.checkpoint_dir = "{}/checkpoints/".format(self.model_dir)
self.log_dir = "{}/logs/".format(self.model_dir)
self.video_dir = "{}/videos/".format(self.model_dir)
self.dirs = [self.checkpoint_dir, self.log_dir, self.video_dir]
for d in self.dirs: os.makedirs(d, exist_ok=True)
def init_session(self, sess=None, init_logging=True):
if sess is None:
self.sess = tf.Session()
self.sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
else:
self.sess = sess
if init_logging:
self.train_writer = tf.summary.FileWriter(self.log_dir, self.sess.graph)
def save(self):
model_checkpoint = os.path.join(self.checkpoint_dir, "model.ckpt")
self.saver.save(self.sess, model_checkpoint, global_step=self.episode_counter.var)
print("Model checkpoint saved to {}".format(model_checkpoint))
def load_latest_checkpoint(self):
model_checkpoint = tf.train.latest_checkpoint(self.checkpoint_dir)
if model_checkpoint:
try:
self.saver.restore(self.sess, model_checkpoint)
print("Model checkpoint restored from {}".format(model_checkpoint))
return True
except Exception as e:
print(e)
return False
def train(self, input_states, taken_actions, returns, advantage):
_, _, summaries, step_idx = \
self.sess.run([self.train_step, self.update_metrics_op, self.stepwise_summaries, self.train_step_counter.var],
feed_dict={
self.input_states: input_states,
self.taken_actions: taken_actions,
self.returns: returns,
self.advantage: advantage
}
)
self.train_writer.add_summary(summaries, step_idx)
self.sess.run(self.train_step_counter.inc_op) # Inc step counter
def predict(self, input_states, greedy=False, write_to_summary=False):
# Extend input axis 0 if no batch dim
input_states = np.asarray(input_states)
if len(input_states.shape) != 2:
input_states = [input_states]
# Predict action
action = self.policy.action_mean if greedy else self.policy.sampled_action
sampled_action, value, summaries, step_idx = \
self.sess.run([action, self.policy.value, self.stepwise_prediction_summaries, self.predict_step_counter.var],
feed_dict={self.input_states: input_states}
)
if write_to_summary:
self.train_writer.add_summary(summaries, step_idx)
self.sess.run(self.predict_step_counter.inc_op)
# Squeeze output if output has one element
if len(input_states) == 1:
return sampled_action[0], value[0]
return sampled_action, value
def get_episode_idx(self):
return self.sess.run(self.episode_counter.var)
def get_train_step_idx(self):
return self.sess.run(self.train_step_counter.var)
def get_predict_step_idx(self):
return self.sess.run(self.predict_step_counter.var)
def write_value_to_summary(self, summary_name, value, step):
summary = tf.Summary()
summary.value.add(tag=summary_name, simple_value=value)
self.train_writer.add_summary(summary, step)
def write_dict_to_summary(self, summary_name, params, step):
summary_op = tf.summary.text(summary_name, tf.stack([tf.convert_to_tensor([k, str(v)]) for k, v in params.items()]))
self.train_writer.add_summary(self.sess.run(summary_op))
def write_episodic_summaries(self):
self.train_writer.add_summary(self.sess.run(self.episodic_summaries), self.get_episode_idx())
self.sess.run([self.episode_counter.inc_op, tf.local_variables_initializer()])
def update_old_policy(self):
self.sess.run(self.update_op)