Skip to content
forked from kaishxu/imlp

iMLP (interval Multilayer Perceptron) python module

Notifications You must be signed in to change notification settings

birdalugur/imlp

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

interval Multilayer Perceptron

Interval Multilayer Perceptron is a method which implements multilayer perceptron with interval-valued inputs and interval-valued outputs. This package is based on the paper, iMLP: Applying multi-layer perceptrons to interval-valued data, AM San Roque.

Usage

from imlp import iAct, iLoss, get_model
import numpy as np

# Generate the synthetic data
x1 = np.sin(np.arange(0, 9, 0.01))
x2 = np.cos(np.arange(0, 9, 0.01))
x3 = x1**2
x4 = (x1+x2)/2
tmp = np.ones((900,))

Xtrain_c = x3[0:5]
Xtrain_r = tmp[0:5]
Ytrain_c = x4[0:1]
Ytrain_r = tmp[0:1]

for i in range(1,100):
    Xtrain_c = np.vstack((Xtrain_c, x3[i:i+5]))
    Xtrain_r = np.vstack((Xtrain_r, tmp[i:i+5]))
    Ytrain_c = np.vstack((Ytrain_c, x4[i:i+1]))
    Ytrain_r = np.vstack((Ytrain_r, tmp[i:i+1]))

# Parameters
input_dim = 5
output_dim = 1
num_hidden_layers = 2
num_units = [200, 200]
act = ['relu', 'relu']
beta = 0.5  # control the balance between center and radius in loss function

# Get model
model = get_model(input_dim, output_dim, num_units, act, beta, num_hidden_layers)

# Train
model.fit(x=[Xtrain_c, Xtrain_r], y=[Ytrain_c, Ytrain_r], epochs=10)

Structure of the iMLP

kernel function

Hidden layer

kernel function

Activation function

kernel function

Loss function

kernel function

About

iMLP (interval Multilayer Perceptron) python module

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 66.8%
  • Python 33.2%