forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_935.java
91 lines (81 loc) · 2.84 KB
/
_935.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
package com.fishercoder.solutions;
/**
* 935. Knight Dialer
*
* A chess knight can move as indicated in the chess diagram below:
*
* https://assets.leetcode.com/uploads/2018/10/12/knight.png
*
* |---|---|---|
* | 1 | 2 | 3 |
* |---|---|---|
* | 4 | 5 | 6 |
* |---|---|---|
* | 7 | 8 | 9 |
* |---|---|---|
* | x | 0 | x |
* |---|---|---|
*
* This time, we place our chess knight on any numbered key of a phone pad (indicated above), and the knight makes N-1 hops.
* Each hop must be from one key to another numbered key.
*
* Each time it lands on a key (including the initial placement of the knight), it presses the number of that key, pressing N digits total.
*
* How many distinct numbers can you dial in this manner?
*
* Since the answer may be large, output the answer modulo 10^9 + 7.
*
* Note:
* * 1 <= N <= 5000
*/
public class _935 {
/*
* The intuition is to calculate the number of ways
* we can reach a key k after i hops, based on the number of ways we can reach keys x after i-1 hops
* s.t. the knight can move from x to k in one move
* For example,
* We can reach 6 in 3 ways after 1 hop (1 -> 6, 7 -> 6 or 0 -> 6)
* We can reach 8 in 2 ways after 1 hop (1 -> 8 or 3 -> 8)
* Thus, we can reach 1 in 5 ways after 2 hops:
* . 1. 1 -> 6 -> 1
* . 2. 7 -> 6 -> 1
* . 3. 0 -> 6 -> 1
* 4. 1 -> 8 -> 1
* 5. 3 -> 8 -> 1
*/
public static class Solution1 {
private static final int MOD = 1000_000_007;
// whereFromHere[i] is an array of keys that can be reached from the ith digit
private static final int[][] whereFromHere = {
{4, 6}, {6, 8}, {7, 9}, {4, 8}, // 0, 1, 2, 3
{3, 9, 0}, {}, {1, 7, 0}, // 4, 5, 6
{2, 6}, {1, 3}, {2, 4} // 7, 8, 9
};
public int knightDialer(int N) {
// a[i] is the number of ways we can end up on the ith digit
// The initial array is for N = 1, i.e. for 0 hops.
long[] a = new long[]{1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
// Simulate N - 1 hops
for (int i = 0; i < N - 1; ++i) {
long[] tmp = new long[10];
// For each digit
for (int j = 0; j < 10; j++) {
// Which other digits can we reach?
for (int k : whereFromHere[j]) {
tmp[j] = (tmp[j] + a[k]) % MOD;
}
}
// Sanity checks based on symmetry of the keypad
assert tmp[1] == tmp[3];
assert tmp[4] == tmp[6];
assert tmp[7] == tmp[9];
a = tmp;
}
long ans = 0;
for (long k : a) {
ans = (ans + k) % MOD;
}
return (int) ans;
}
}
}