forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_724.java
69 lines (64 loc) · 2.11 KB
/
_724.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
package com.fishercoder.solutions;
/**
* 724. Find Pivot Index
*
* Given an array of integers nums, write a method that returns the "pivot" index of this array.
* We define the pivot index as the index where the sum of the numbers to the left of the index is equal
* to the sum of the numbers to the right of the index.
* If no such index exists, we should return -1. If there are multiple pivot indexes, you should return the left-most pivot index.
Example 1:
Input:
nums = [1, 7, 3, 6, 5, 6]
Output: 3
Explanation:
The sum of the numbers to the left of index 3 (nums[3] = 6) is equal to the sum of numbers to the right of index 3.
Also, 3 is the first index where this occurs.
Example 2:
Input:
nums = [1, 2, 3]
Output: -1
Explanation:
There is no index that satisfies the conditions in the problem statement.
Note:
The length of nums will be in the range [0, 10000].
Each element nums[i] will be an integer in the range [-1000, 1000].
*/
public class _724 {
public static class Solution1 {
/**Space: O(n)
* Time: O(n)*/
public int pivotIndex(int[] nums) {
if (nums == null || nums.length == 0) {
return -1;
}
int[] sums = new int[nums.length];
sums[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
sums[i] = sums[i - 1] + nums[i];
}
for (int i = 0; i < nums.length; i++) {
if (i == 0 && 0 == sums[nums.length - 1] - sums[i] || (i > 0 && sums[i - 1] == sums[nums.length - 1] - sums[i])) {
return i;
}
}
return -1;
}
}
public static class Solution2 {
/**Space: O(1)
* Time: O(n)*/
public int pivotIndex(int[] nums) {
int total = 0;
for (int num : nums) {
total += num;
}
int sum = 0;
for (int i = 0; i < nums.length; sum += nums[i++]) {
if (sum * 2 == total - nums[i]) {
return i;
}
}
return -1;
}
}
}