forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_593.java
94 lines (82 loc) · 3.58 KB
/
_593.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
package com.fishercoder.solutions;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
* 593. Valid Square
*
* Given the coordinates of four points in 2D space, return whether the four points could construct a square.
The coordinate (x,y) of a point is represented by an integer array with two integers.
Example:
Input: p1 = [0,0], p2 = [1,1], p3 = [1,0], p4 = [0,1]
Output: True
Note:
All the input integers are in the range [-10000, 10000].
A valid square has four equal sides with positive length and four equal angles (90-degree angles).
Input points have no order.
*/
public class _593 {
public static class Solution1 {
/**
* Note: I don't need to use backtracking to find all permutations, this is an overkill.
* This is the most easy one: https://leetcode.com/articles/kill-process-2/#approach-3-checking-every-case-accepted
*/
public boolean validSquare(int[] p1, int[] p2, int[] p3, int[] p4) {
List<int[]> input = new ArrayList<>(Arrays.asList(p1, p2, p3, p4));
List<List<int[]>> allPermuations = getAllPermutations(input);
for (List<int[]> eachPermutation : allPermuations) {
if (isValid(eachPermutation)) {
return true;
}
}
return false;
}
private List<List<int[]>> getAllPermutations(List<int[]> input) {
List<List<int[]>> result = new ArrayList();
List<int[]> init = new ArrayList<>();
result.add(init);
return backTracking(result, input, 0);
}
private List<List<int[]>> backTracking(List<List<int[]>> result, List<int[]> input, int pos) {
if (pos == input.size()) {
return result;
}
List<List<int[]>> newResult = new ArrayList<>();
for (List<int[]> eachList : result) {
for (int i = 0; i <= eachList.size(); i++) {
List<int[]> newList = new ArrayList<>(eachList);
newList.add(i, input.get(pos));
newResult.add(newList);
}
}
result = newResult;
return backTracking(result, input, pos + 1);
}
private boolean isValid(List<int[]> points) {
int[] p1 = points.get(0);
int[] p2 = points.get(1);
int[] p3 = points.get(2);
int[] p4 = points.get(3);
double distance = (Math.pow(p1[0] - p2[0], 2) + Math.pow(p1[1] - p2[1], 2));
return distance == (Math.pow(p2[0] - p3[0], 2) + Math.pow(p2[1] - p3[1], 2))
&& distance == (Math.pow(p3[0] - p4[0], 2) + Math.pow(p3[1] - p4[1], 2))
&& distance == (Math.pow(p4[0] - p1[0], 2) + Math.pow(p4[1] - p1[1], 2))
&& isRightAngle(p1, p2, p3)
&& noDuplicate(p1, p2, p3, p4);
}
public boolean noDuplicate(int[] p1, int[] p2, int[] p3, int[] p4) {
return !Arrays.equals(p1, p2)
&& !Arrays.equals(p1, p3)
&& !Arrays.equals(p1, p4)
&& !Arrays.equals(p2, p3)
&& !Arrays.equals(p2, p4)
&& !Arrays.equals(p3, p4);
}
public boolean isRightAngle(int[] p1, int[] p2, int[] p3) {
double angle1 = Math.atan2(p2[1] - p1[1], p2[0] - p1[0]);
double angle2 = Math.atan2(p3[1] - p1[1], p3[0] - p1[0]);
double degree = Math.toDegrees(angle1 - angle2);
return degree % 45 == 0;
}
}
}