forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_560.java
48 lines (42 loc) · 1.54 KB
/
_560.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
package com.fishercoder.solutions;
import java.util.HashMap;
import java.util.Map;
/**
* 560. Subarray Sum Equals K
*
* Given an array of integers and an integer k, you need to find the total number of continuous subarrays whose sum equals to k.
Example 1:
Input:nums = [1,1,1], k = 2
Output: 2
Note:
The length of the array is in range [1, 20,000].
The range of numbers in the array is [-1000, 1000] and the range of the integer k is [-1e7, 1e7].
*/
public class _560 {
public static class Solution1 {
/**
* credit: https://discuss.leetcode.com/topic/87850/java-solution-presum-hashmap
* We know the key to solve this problem is SUM[i, j].
* So if we know SUM[0, i - 1] and SUM[0, j],
* then we can easily get SUM[i, j] via (SUM[0, j] - SUM[0, i-1]).
* To achieve this, we just need to go through the array,
* calculate the current sum and save number of all seen PreSum to a HashMap.
* <p>
* Time complexity O(n), Space complexity O(n).
*/
public int subarraySum(int[] nums, int k) {
Map<Integer, Integer> preSum = new HashMap();
int sum = 0;
int result = 0;
preSum.put(0, 1);
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
if (preSum.containsKey(sum - k)) {
result += preSum.get(sum - k);
}
preSum.put(sum, preSum.getOrDefault(sum, 0) + 1);
}
return result;
}
}
}