forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_272.java
74 lines (60 loc) · 2.57 KB
/
_272.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
package com.fishercoder.solutions;
import com.fishercoder.common.classes.TreeNode;
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/**
* 272. Closest Binary Search Tree Value II
*
* Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.
Note:
Given target value is a floating point.
You may assume k is always valid, that is: k ≤ total nodes.
You are guaranteed to have only one unique set of k values in the BST that are closest to the target.
Follow up:
Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?
Hint:
Consider implement these two helper functions:
getPredecessor(N), which returns the next smaller node to N.
getSuccessor(N), which returns the next larger node to N.
Try to assume that each node has a parent pointer, it makes the problem much easier.
Without parent pointer we just need to keep track of the path from the root to the current node using a stack.
You would need two stacks to track the path in finding predecessor and successor node separately.
*/
public class _272 {
public static class Solution1 {
public List<Integer> closestKValues(TreeNode root, double target, int k) {
List<Integer> res = new ArrayList();
Stack<Integer> s1 = new Stack(); // predecessors
Stack<Integer> s2 = new Stack(); // successors
inorder(root, target, false, s1);
inorder(root, target, true, s2);
while (k-- > 0) {
if (s1.isEmpty()) {
res.add(s2.pop());
} else if (s2.isEmpty()) {
res.add(s1.pop());
} else if (Math.abs(s1.peek() - target) < Math.abs(s2.peek() - target)) {
res.add(s1.pop());
} else {
res.add(s2.pop());
}
}
return res;
}
// inorder traversal
void inorder(TreeNode root, double target, boolean reverse, Stack<Integer> stack) {
if (root == null) {
return;
}
inorder(reverse ? root.right : root.left, target, reverse, stack);
// early terminate, no need to traverse the whole tree
if ((reverse && root.val <= target) || (!reverse && root.val > target)) {
return;
}
// track the value of current node
stack.push(root.val);
inorder(reverse ? root.left : root.right, target, reverse, stack);
}
}
}