You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This benchmark is dedicated to solver of Cox estimation:
$$
\min_{w} \frac{1}{n} \sum_{i=1}^{n} -s_i \langle x_i, w \rangle + \log(\textstyle\sum_{y_j \geq y_i} e^{\langle x_j, w \rangle})
+ \lambda \Big( \rho \lVert w \rVert_1 + \frac{1-\rho}{2} \lVert w \rVert^2_2 \Big)
$$
where $n$ (or n_samples) stands for the number of samples, $p$ (or n_features) stands for the number of features, $s$ the vector of observation censorship, $y$ occurrences times.
$$\mathbf{X} \in \mathbb{R}^{n \times p} \ , \, s \in \{ 0, 1 \}^n, \ y \in \mathbb{R}^n, \quad w \in \mathbb{R}^p$$
In the case of tied data, data with observation having the same occurrences time, the objective reads
$$
\min_{w} \frac{1}{n} \sum_{l=1}^{m} \bigg(
\sum_{i \in H_{i_l}} - \langle x_i, w \rangle
+ \log \Bigl(\textstyle \sum_{y_j \geq y_{i_l}} e^{\langle x_j, w \rangle} - \frac{\#(i) - 1}{\lvert H_{i_l} \rvert}\textstyle\sum_{j \in H_{i_l}} e^{\langle x_j, w \rangle}\Bigl)
\bigg)
+ \lambda \Big( \rho \lVert w \rVert_1 + \frac{1-\rho}{2} \lVert w \rVert^2_2 \Big)
$$
where $H_{i_l} = \{ i \ | \ s_i = 1 \ ;\ y_{i} = y_{i_l} \}$ is the set of uncensored observations with same occurrence time $y_{i_l}$ and $\#(i)$ the index of observation $i$ in $H_{i_l}$.
Install
This benchmark can be run using the following commands:
$ pip install -U benchopt
$ git clone https://github.com/benchopt/benchmark_l1_cox
$ cd benchmark_l1_cox
$ benchopt run .
Apart from the problem, options can be passed to benchopt run, to restrict the benchmarks to some solvers or datasets, e.g.: