-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfit.py
177 lines (156 loc) · 6.38 KB
/
fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import logging
from pathlib import Path
import cv2
import hydra
import jax
import jax.numpy as jnp
import numpy as np
from omegaconf import DictConfig, OmegaConf
from PIL import Image
from drawingwithgaussians.gaussian import init_gaussians, set_up_optimizers, split_n_prune, update
from drawingwithgaussians.losses import diffusion_guidance, pixel_loss
from drawingwithgaussians.sds_pipeline import FlaxStableDiffusionImg2ImgPipeline
@hydra.main(version_base=None, config_path="./configs")
def fit(cfg: DictConfig):
log = logging.getLogger(__name__)
log.info(f"Running with config: \n{OmegaConf.to_yaml(cfg)}")
hydra_cfg = hydra.core.hydra_config.HydraConfig.get()
out_dir = Path(hydra_cfg["runtime"]["output_dir"])
key = jax.random.key(cfg.optim.seed)
img = Image.open(cfg.image.path)
height = cfg.image.height
width = cfg.image.width
num_epochs = cfg.optim.num_epochs
max_steps = cfg.optim.num_steps
target_image = jnp.array(img.resize((height, width)), dtype=jnp.float32)[:, :, :3] / 255
means, L, colors, rotmats, background_color = init_gaussians(
num_gaussians=cfg.gaussians.initial_num_gaussians,
target_image=target_image,
key=key,
optimize_background=cfg.optim.optimize_background,
)
optimizers = set_up_optimizers(
means,
L,
colors,
rotmats,
background_color,
lr=cfg.optim.lr,
max_steps=cfg.optim.num_steps,
means_mode=cfg.optim.means_mode,
optimize_background=cfg.optim.optimize_background,
)
if cfg.optim.loss.name == "diffusion_guidance":
dtype = jnp.bfloat16
pipeline, params = FlaxStableDiffusionImg2ImgPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="bf16",
dtype=dtype,
)
prev_stats = []
frames = []
if cfg.optim.optimize_background:
grad_argnums = [0, 1, 2, 3, 4]
else:
grad_argnums = [0, 1, 2, 3]
if cfg.optim.loss.name == "diffusion_guidance":
loss_grad = jax.value_and_grad(diffusion_guidance, argnums=grad_argnums, has_aux=True)
elif cfg.optim.loss.name == "pixel":
loss_grad = jax.value_and_grad(pixel_loss, argnums=grad_argnums, has_aux=True)
for num_epoch in range(num_epochs):
for step in range(max_steps):
if cfg.optim.loss.name == "diffusion_guidance":
strength = cfg.optim.loss.strength
if cfg.optim.loss.strength_annealing:
strength = strength * ((num_epochs * max_steps - num_epoch * step) / (num_epochs * max_steps))
if step % cfg.optim.loss.img2img_freq == 0:
target_image = None
else:
target_image = jnp.copy(diffusion_image)
(loss, (renderred_gaussians, diffusion_image)), gradients = loss_grad(
means,
L,
colors,
rotmats,
background_color,
prompt=cfg.optim.loss.prompt,
key=key,
shape=(height, width, 3),
diffusion_shape=(cfg.optim.loss.height, cfg.optim.loss.height, 3),
num_steps=cfg.optim.loss.num_steps,
strength=strength,
pipeline=pipeline,
params=params,
dtype=dtype,
cfg_scale=cfg.optim.loss.cfg_scale,
target_image=target_image,
)
if cfg.optim.loss.name == "pixel":
(loss, renderred_gaussians), gradients = loss_grad(
means,
L,
colors,
rotmats,
background_color,
target_image,
ssim_weight=cfg.optim.loss.ssim_weight,
)
means, L, colors, rotmats, background_color, optimizers = update(
means, L, colors, rotmats, background_color, optimizers, gradients
)
if jnp.isnan(loss):
log.error("Loss became NaN")
log.debug(prev_stats)
log.debug(f"{loss}, {[(jnp.linalg.norm(gradient), gradient.max()) for gradient in gradients]}")
break
if step % cfg.train.log_frequency == 0:
log.info(
f"Loss: {loss:.5f}, step: {step}, at epoch {num_epoch} / {num_epochs}, num gaussians: {means.shape[0]}"
)
if cfg.optim.loss.name == "diffusion_guidance":
frames.append((renderred_gaussians, diffusion_image))
elif cfg.optim.loss.name == "pixel":
frames.append((renderred_gaussians))
prev_stats = [(jnp.linalg.norm(gradient), gradient.max()) for gradient in gradients]
means, L, colors, rotmats, background_color = split_n_prune(
means,
L,
colors,
rotmats,
background_color,
gradients,
key,
grad_thr=cfg.gaussians.grad_thr,
color_demp_coeff=cfg.gaussians.color_demp_coeff,
)
optimizers = set_up_optimizers(
means,
L,
colors,
rotmats,
background_color,
lr=cfg.optim.lr,
max_steps=cfg.optim.num_steps,
means_mode=cfg.optim.means_mode,
optimize_background=cfg.optim.optimize_background,
)
width = width * 2
out = cv2.VideoWriter(
str(out_dir / "outpy.avi"),
cv2.VideoWriter_fourcc("M", "J", "P", "G"),
24,
(width, height),
)
for frame in frames:
if cfg.optim.loss.name == "diffusion_guidance":
g = (np.clip(np.array(jnp.array(frame[0].block_until_ready())), 0, 1) * 255).astype(np.uint8)
i = (np.clip(np.array(jnp.array(frame[1].block_until_ready())), 0, 1) * 255).astype(np.uint8)
processed = np.hstack([g, i])
elif cfg.optim.loss.name == "pixel":
g = (np.clip(np.array(jnp.array(frame.block_until_ready())), 0, 1) * 255).astype(np.uint8)
i = (np.clip(np.array(jnp.array(target_image.block_until_ready())), 0, 1) * 255).astype(np.uint8)
processed = np.hstack([g, i])
out.write(processed[:, :, ::-1])
out.release()
if __name__ == "__main__":
fit()